Module ktrain.lroptimize.optimization
Functions and classes related to optimization (weight updates).
Expand source code
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Functions and classes related to optimization (weight updates)."""
import re
from typing import Callable, List, Optional, Union
import tensorflow as tf
class WarmUp(tf.keras.optimizers.schedules.LearningRateSchedule):
"""
```
Applies a warmup schedule on a given learning rate decay schedule.
Args:
initial_learning_rate (:obj:`float`):
The initial learning rate for the schedule after the warmup (so this will be the learning rate at the end
of the warmup).
decay_schedule_fn (:obj:`Callable`):
The schedule function to apply after the warmup for the rest of training.
warmup_steps (:obj:`int`):
The number of steps for the warmup part of training.
power (:obj:`float`, `optional`, defaults to 1):
The power to use for the polynomial warmup (defaults is a linear warmup).
name (:obj:`str`, `optional`):
Optional name prefix for the returned tensors during the schedule.
```
"""
def __init__(
self,
initial_learning_rate: float,
decay_schedule_fn: Callable,
warmup_steps: int,
power: float = 1.0,
name: str = None,
):
super().__init__()
self.initial_learning_rate = initial_learning_rate
self.warmup_steps = warmup_steps
self.power = power
self.decay_schedule_fn = decay_schedule_fn
self.name = name
def __call__(self, step):
with tf.name_scope(self.name or "WarmUp") as name:
# Implements polynomial warmup. i.e., if global_step < warmup_steps, the
# learning rate will be `global_step/num_warmup_steps * init_lr`.
global_step_float = tf.cast(step, tf.float32)
warmup_steps_float = tf.cast(self.warmup_steps, tf.float32)
warmup_percent_done = global_step_float / warmup_steps_float
warmup_learning_rate = self.initial_learning_rate * tf.math.pow(
warmup_percent_done, self.power
)
return tf.cond(
global_step_float < warmup_steps_float,
lambda: warmup_learning_rate,
lambda: self.decay_schedule_fn(step - self.warmup_steps),
name=name,
)
def get_config(self):
return {
"initial_learning_rate": self.initial_learning_rate,
"decay_schedule_fn": self.decay_schedule_fn,
"warmup_steps": self.warmup_steps,
"power": self.power,
"name": self.name,
}
def create_optimizer(
init_lr: float,
num_train_steps: int,
num_warmup_steps: int,
min_lr_ratio: float = 0.0,
adam_epsilon: float = 1e-8,
weight_decay_rate: float = 0.0,
include_in_weight_decay: Optional[List[str]] = None,
):
"""
```
Creates an optimizer with a learning rate schedule using a warmup phase followed by a linear decay.
Args:
init_lr (:obj:`float`):
The desired learning rate at the end of the warmup phase.
num_train_step (:obj:`int`):
The total number of training steps.
num_warmup_steps (:obj:`int`):
The number of warmup steps.
min_lr_ratio (:obj:`float`, `optional`, defaults to 0):
The final learning rate at the end of the linear decay will be :obj:`init_lr * min_lr_ratio`.
adam_epsilon (:obj:`float`, `optional`, defaults to 1e-8):
The epsilon to use in Adam.
weight_decay_rate (:obj:`float`, `optional`, defaults to 0):
The weight decay to use.
include_in_weight_decay (:obj:`List[str]`, `optional`):
List of the parameter names (or re patterns) to apply weight decay to. If none is passed, weight decay is
applied to all parameters except bias and layer norm parameters.
```
"""
# Implements linear decay of the learning rate.
lr_schedule = tf.keras.optimizers.schedules.PolynomialDecay(
initial_learning_rate=init_lr,
decay_steps=num_train_steps - num_warmup_steps,
end_learning_rate=init_lr * min_lr_ratio,
)
if num_warmup_steps:
lr_schedule = WarmUp(
initial_learning_rate=init_lr,
decay_schedule_fn=lr_schedule,
warmup_steps=num_warmup_steps,
)
if weight_decay_rate > 0.0:
optimizer = AdamWeightDecay(
learning_rate=lr_schedule,
weight_decay_rate=weight_decay_rate,
beta_1=0.9,
beta_2=0.999,
epsilon=adam_epsilon,
exclude_from_weight_decay=["LayerNorm", "layer_norm", "bias"],
include_in_weight_decay=include_in_weight_decay,
)
else:
optimizer = tf.keras.optimizers.Adam(
learning_rate=lr_schedule, epsilon=adam_epsilon
)
# We return the optimizer and the LR scheduler in order to better track the
# evolution of the LR independently of the optimizer.
return optimizer, lr_schedule
# dep_fix
from packaging import version
adam_class = (
tf.keras.optimizers.Adam
if version.parse(tf.__version__) < version.parse("2.11")
else tf.keras.optimizers.legacy.Adam
)
class AdamWeightDecay(adam_class):
"""
```
Adam enables L2 weight decay and clip_by_global_norm on gradients. Just adding the square of the weights to the
loss function is *not* the correct way of using L2 regularization/weight decay with Adam, since that will interact
with the m and v parameters in strange ways as shown in
`Decoupled Weight Decay Regularization <https://arxiv.org/abs/1711.05101>`__.
Instead we want ot decay the weights in a manner that doesn't interact with the m/v parameters. This is equivalent
to adding the square of the weights to the loss with plain (non-momentum) SGD.
Args:
learning_rate (:obj:`Union[float, tf.keras.optimizers.schedules.LearningRateSchedule]`, `optional`, defaults to 1e-3):
The learning rate to use or a schedule.
beta_1 (:obj:`float`, `optional`, defaults to 0.9):
The beta1 parameter in Adam, which is the exponential decay rate for the 1st momentum estimates.
beta_2 (:obj:`float`, `optional`, defaults to 0.999):
The beta2 parameter in Adam, which is the exponential decay rate for the 2nd momentum estimates.
epsilon (:obj:`float`, `optional`, defaults to 1e-7):
The epsilon paramenter in Adam, which is a small constant for numerical stability.
amsgrad (:obj:`bool`, `optional`, default to `False`):
Wheter to apply AMSGrad varient of this algorithm or not, see
`On the Convergence of Adam and Beyond <https://arxiv.org/abs/1904.09237>`__.
weight_decay_rate (:obj:`float`, `optional`, defaults to 0):
The weight decay to apply.
include_in_weight_decay (:obj:`List[str]`, `optional`):
List of the parameter names (or re patterns) to apply weight decay to. If none is passed, weight decay is
applied to all parameters by default (unless they are in :obj:`exclude_from_weight_decay`).
exclude_from_weight_decay (:obj:`List[str]`, `optional`):
List of the parameter names (or re patterns) to exclude from applying weight decay to. If a
:obj:`include_in_weight_decay` is passed, the names in it will supersede this list.
name (:obj:`str`, `optional`, defaults to 'AdamWeightDecay'):
Optional name for the operations created when applying gradients.
kwargs:
Keyward arguments. Allowed to be {``clipnorm``, ``clipvalue``, ``lr``, ``decay``}. ``clipnorm`` is clip
gradients by norm; ``clipvalue`` is clip gradients by value, ``decay`` is included for backward
compatibility to allow time inverse decay of learning rate. ``lr`` is included for backward compatibility,
recommended to use ``learning_rate`` instead.
```
"""
def __init__(
self,
learning_rate: Union[
float, tf.keras.optimizers.schedules.LearningRateSchedule
] = 0.001,
beta_1: float = 0.9,
beta_2: float = 0.999,
epsilon: float = 1e-7,
amsgrad: bool = False,
weight_decay_rate: float = 0.0,
include_in_weight_decay: Optional[List[str]] = None,
exclude_from_weight_decay: Optional[List[str]] = None,
name: str = "AdamWeightDecay",
**kwargs
):
super().__init__(
learning_rate, beta_1, beta_2, epsilon, amsgrad, name, **kwargs
)
self.weight_decay_rate = weight_decay_rate
self._include_in_weight_decay = include_in_weight_decay
self._exclude_from_weight_decay = exclude_from_weight_decay
@classmethod
def from_config(cls, config):
"""Creates an optimizer from its config with WarmUp custom object."""
custom_objects = {"WarmUp": WarmUp}
return super(AdamWeightDecay, cls).from_config(
config, custom_objects=custom_objects
)
def _prepare_local(self, var_device, var_dtype, apply_state):
super(AdamWeightDecay, self)._prepare_local(var_device, var_dtype, apply_state)
apply_state[(var_device, var_dtype)]["weight_decay_rate"] = tf.constant(
self.weight_decay_rate, name="adam_weight_decay_rate"
)
def _decay_weights_op(self, var, learning_rate, apply_state):
do_decay = self._do_use_weight_decay(var.name)
if do_decay:
return var.assign_sub(
learning_rate
* var
* apply_state[(var.device, var.dtype.base_dtype)]["weight_decay_rate"],
use_locking=self._use_locking,
)
return tf.no_op()
def apply_gradients(self, grads_and_vars, name=None, **kwargs):
# 2020-07-05: added **kwargs based on https://github.com/tensorflow/addons/issues/1267
grads, tvars = list(zip(*grads_and_vars))
return super(AdamWeightDecay, self).apply_gradients(
zip(grads, tvars),
name=name,
)
def _get_lr(self, var_device, var_dtype, apply_state):
"""Retrieves the learning rate with the given state."""
if apply_state is None:
return self._decayed_lr_t[var_dtype], {}
apply_state = apply_state or {}
coefficients = apply_state.get((var_device, var_dtype))
if coefficients is None:
coefficients = self._fallback_apply_state(var_device, var_dtype)
apply_state[(var_device, var_dtype)] = coefficients
return coefficients["lr_t"], dict(apply_state=apply_state)
def _resource_apply_dense(self, grad, var, apply_state=None):
lr_t, kwargs = self._get_lr(var.device, var.dtype.base_dtype, apply_state)
decay = self._decay_weights_op(var, lr_t, apply_state)
with tf.control_dependencies([decay]):
return super(AdamWeightDecay, self)._resource_apply_dense(
grad, var, **kwargs
)
def _resource_apply_sparse(self, grad, var, indices, apply_state=None):
lr_t, kwargs = self._get_lr(var.device, var.dtype.base_dtype, apply_state)
decay = self._decay_weights_op(var, lr_t, apply_state)
with tf.control_dependencies([decay]):
return super(AdamWeightDecay, self)._resource_apply_sparse(
grad, var, indices, **kwargs
)
def get_config(self):
config = super().get_config()
config.update({"weight_decay_rate": self.weight_decay_rate})
return config
def _do_use_weight_decay(self, param_name):
"""Whether to use L2 weight decay for `param_name`."""
if self.weight_decay_rate == 0:
return False
if self._include_in_weight_decay:
for r in self._include_in_weight_decay:
if re.search(r, param_name) is not None:
return True
if self._exclude_from_weight_decay:
for r in self._exclude_from_weight_decay:
if re.search(r, param_name) is not None:
return False
return True
# Extracted from https://github.com/OpenNMT/OpenNMT-tf/blob/master/opennmt/optimizers/utils.py
class GradientAccumulator(object):
"""Gradient accumulation utility.
When used with a distribution strategy, the accumulator should be called in a
replica context. Gradients will be accumulated locally on each replica and
without synchronization. Users should then call ``.gradients``, scale the
gradients if required, and pass the result to ``apply_gradients``.
"""
# We use the ON_READ synchronization policy so that no synchronization is
# performed on assignment. To get the value, we call .value() which returns the
# value on the current replica without synchronization.
def __init__(self):
"""Initializes the accumulator."""
self._gradients = []
self._accum_steps = None
@property
def step(self):
"""Number of accumulated steps."""
if self._accum_steps is None:
self._accum_steps = tf.Variable(
tf.constant(0, dtype=tf.int64),
trainable=False,
synchronization=tf.VariableSynchronization.ON_READ,
aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA,
)
return self._accum_steps.value()
@property
def gradients(self):
"""The accumulated gradients on the current replica."""
if not self._gradients:
raise ValueError(
"The accumulator should be called first to initialize the gradients"
)
return list(
gradient.value() if gradient is not None else gradient
for gradient in self._gradients
)
def __call__(self, gradients):
"""Accumulates :obj:`gradients` on the current replica."""
if not self._gradients:
_ = self.step # Create the step variable.
self._gradients.extend(
[
(
tf.Variable(
tf.zeros_like(gradient),
trainable=False,
synchronization=tf.VariableSynchronization.ON_READ,
aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA,
)
if gradient is not None
else gradient
)
for gradient in gradients
]
)
if len(gradients) != len(self._gradients):
raise ValueError(
"Expected %s gradients, but got %d"
% (len(self._gradients), len(gradients))
)
for accum_gradient, gradient in zip(self._gradients, gradients):
if accum_gradient is not None and gradient is not None:
accum_gradient.assign_add(gradient)
self._accum_steps.assign_add(1)
def reset(self):
"""Resets the accumulated gradients on the current replica."""
if not self._gradients:
return
self._accum_steps.assign(0)
for gradient in self._gradients:
if gradient is not None:
gradient.assign(tf.zeros_like(gradient))
Functions
def create_optimizer(init_lr: float, num_train_steps: int, num_warmup_steps: int, min_lr_ratio: float = 0.0, adam_epsilon: float = 1e-08, weight_decay_rate: float = 0.0, include_in_weight_decay: Optional[List[str]] = None)
-
Creates an optimizer with a learning rate schedule using a warmup phase followed by a linear decay. Args: init_lr (:obj:`float`): The desired learning rate at the end of the warmup phase. num_train_step (:obj:`int`): The total number of training steps. num_warmup_steps (:obj:`int`): The number of warmup steps. min_lr_ratio (:obj:`float`, `optional`, defaults to 0): The final learning rate at the end of the linear decay will be :obj:`init_lr * min_lr_ratio`. adam_epsilon (:obj:`float`, `optional`, defaults to 1e-8): The epsilon to use in Adam. weight_decay_rate (:obj:`float`, `optional`, defaults to 0): The weight decay to use. include_in_weight_decay (:obj:`List[str]`, `optional`): List of the parameter names (or re patterns) to apply weight decay to. If none is passed, weight decay is applied to all parameters except bias and layer norm parameters.
Expand source code
def create_optimizer( init_lr: float, num_train_steps: int, num_warmup_steps: int, min_lr_ratio: float = 0.0, adam_epsilon: float = 1e-8, weight_decay_rate: float = 0.0, include_in_weight_decay: Optional[List[str]] = None, ): """ ``` Creates an optimizer with a learning rate schedule using a warmup phase followed by a linear decay. Args: init_lr (:obj:`float`): The desired learning rate at the end of the warmup phase. num_train_step (:obj:`int`): The total number of training steps. num_warmup_steps (:obj:`int`): The number of warmup steps. min_lr_ratio (:obj:`float`, `optional`, defaults to 0): The final learning rate at the end of the linear decay will be :obj:`init_lr * min_lr_ratio`. adam_epsilon (:obj:`float`, `optional`, defaults to 1e-8): The epsilon to use in Adam. weight_decay_rate (:obj:`float`, `optional`, defaults to 0): The weight decay to use. include_in_weight_decay (:obj:`List[str]`, `optional`): List of the parameter names (or re patterns) to apply weight decay to. If none is passed, weight decay is applied to all parameters except bias and layer norm parameters. ``` """ # Implements linear decay of the learning rate. lr_schedule = tf.keras.optimizers.schedules.PolynomialDecay( initial_learning_rate=init_lr, decay_steps=num_train_steps - num_warmup_steps, end_learning_rate=init_lr * min_lr_ratio, ) if num_warmup_steps: lr_schedule = WarmUp( initial_learning_rate=init_lr, decay_schedule_fn=lr_schedule, warmup_steps=num_warmup_steps, ) if weight_decay_rate > 0.0: optimizer = AdamWeightDecay( learning_rate=lr_schedule, weight_decay_rate=weight_decay_rate, beta_1=0.9, beta_2=0.999, epsilon=adam_epsilon, exclude_from_weight_decay=["LayerNorm", "layer_norm", "bias"], include_in_weight_decay=include_in_weight_decay, ) else: optimizer = tf.keras.optimizers.Adam( learning_rate=lr_schedule, epsilon=adam_epsilon ) # We return the optimizer and the LR scheduler in order to better track the # evolution of the LR independently of the optimizer. return optimizer, lr_schedule
Classes
class AdamWeightDecay (learning_rate: Union[float, keras.optimizers.schedules.learning_rate_schedule.LearningRateSchedule] = 0.001, beta_1: float = 0.9, beta_2: float = 0.999, epsilon: float = 1e-07, amsgrad: bool = False, weight_decay_rate: float = 0.0, include_in_weight_decay: Optional[List[str]] = None, exclude_from_weight_decay: Optional[List[str]] = None, name: str = 'AdamWeightDecay', **kwargs)
-
Adam enables L2 weight decay and clip_by_global_norm on gradients. Just adding the square of the weights to the loss function is *not* the correct way of using L2 regularization/weight decay with Adam, since that will interact with the m and v parameters in strange ways as shown in `Decoupled Weight Decay Regularization <https://arxiv.org/abs/1711.05101>`__. Instead we want ot decay the weights in a manner that doesn't interact with the m/v parameters. This is equivalent to adding the square of the weights to the loss with plain (non-momentum) SGD. Args: learning_rate (:obj:`Union[float, tf.keras.optimizers.schedules.LearningRateSchedule]`, `optional`, defaults to 1e-3): The learning rate to use or a schedule. beta_1 (:obj:`float`, `optional`, defaults to 0.9): The beta1 parameter in Adam, which is the exponential decay rate for the 1st momentum estimates. beta_2 (:obj:`float`, `optional`, defaults to 0.999): The beta2 parameter in Adam, which is the exponential decay rate for the 2nd momentum estimates. epsilon (:obj:`float`, `optional`, defaults to 1e-7): The epsilon paramenter in Adam, which is a small constant for numerical stability. amsgrad (:obj:`bool`, `optional`, default to `False`): Wheter to apply AMSGrad varient of this algorithm or not, see `On the Convergence of Adam and Beyond <https://arxiv.org/abs/1904.09237>`__. weight_decay_rate (:obj:`float`, `optional`, defaults to 0): The weight decay to apply. include_in_weight_decay (:obj:`List[str]`, `optional`): List of the parameter names (or re patterns) to apply weight decay to. If none is passed, weight decay is applied to all parameters by default (unless they are in :obj:`exclude_from_weight_decay`). exclude_from_weight_decay (:obj:`List[str]`, `optional`): List of the parameter names (or re patterns) to exclude from applying weight decay to. If a :obj:`include_in_weight_decay` is passed, the names in it will supersede this list. name (:obj:`str`, `optional`, defaults to 'AdamWeightDecay'): Optional name for the operations created when applying gradients. kwargs: Keyward arguments. Allowed to be {``clipnorm``, ``clipvalue``, ``lr``, ``decay``}. ``clipnorm`` is clip gradients by norm; ``clipvalue`` is clip gradients by value, ``decay`` is included for backward compatibility to allow time inverse decay of learning rate. ``lr`` is included for backward compatibility, recommended to use ``learning_rate`` instead.
Create a new Optimizer.
This must be called by the constructors of subclasses. Note that Optimizer instances should not bind to a single graph, and so shouldn't keep Tensors as member variables. Generally you should be able to use the _set_hyper()/state.get_hyper() facility instead.
This class is stateful and thread-compatible.
Example of custom gradient transformations:
def my_gradient_transformer(grads_and_vars): # Simple example, double the gradients. return [(2. * g, v) for g, v in grads_and_vars] optimizer = tf.keras.optimizers.legacy.SGD( 1e-3, gradient_transformers=[my_gradient_transformer])
Args
name
- String. The name to use for momentum accumulator weights created by the optimizer.
gradient_aggregator
- The function to use to aggregate gradients across
devices (when using
tf.distribute.Strategy
). IfNone
, defaults to summing the gradients across devices. The function should accept and return a list of(gradient, variable)
tuples. gradient_transformers
- Optional. List of functions to use to transform
gradients before applying updates to Variables. The functions are
applied after
gradient_aggregator
. The functions should accept and return a list of(gradient, variable)
tuples. **kwargs
- keyword arguments. Allowed arguments are
clipvalue
,clipnorm
,global_clipnorm
. Ifclipvalue
(float) is set, the gradient of each weight is clipped to be no higher than this value. Ifclipnorm
(float) is set, the gradient of each weight is individually clipped so that its norm is no higher than this value. Ifglobal_clipnorm
(float) is set the gradient of all weights is clipped so that their global norm is no higher than this value.
Raises
ValueError
- in case of any invalid argument.
Expand source code
class AdamWeightDecay(adam_class): """ ``` Adam enables L2 weight decay and clip_by_global_norm on gradients. Just adding the square of the weights to the loss function is *not* the correct way of using L2 regularization/weight decay with Adam, since that will interact with the m and v parameters in strange ways as shown in `Decoupled Weight Decay Regularization <https://arxiv.org/abs/1711.05101>`__. Instead we want ot decay the weights in a manner that doesn't interact with the m/v parameters. This is equivalent to adding the square of the weights to the loss with plain (non-momentum) SGD. Args: learning_rate (:obj:`Union[float, tf.keras.optimizers.schedules.LearningRateSchedule]`, `optional`, defaults to 1e-3): The learning rate to use or a schedule. beta_1 (:obj:`float`, `optional`, defaults to 0.9): The beta1 parameter in Adam, which is the exponential decay rate for the 1st momentum estimates. beta_2 (:obj:`float`, `optional`, defaults to 0.999): The beta2 parameter in Adam, which is the exponential decay rate for the 2nd momentum estimates. epsilon (:obj:`float`, `optional`, defaults to 1e-7): The epsilon paramenter in Adam, which is a small constant for numerical stability. amsgrad (:obj:`bool`, `optional`, default to `False`): Wheter to apply AMSGrad varient of this algorithm or not, see `On the Convergence of Adam and Beyond <https://arxiv.org/abs/1904.09237>`__. weight_decay_rate (:obj:`float`, `optional`, defaults to 0): The weight decay to apply. include_in_weight_decay (:obj:`List[str]`, `optional`): List of the parameter names (or re patterns) to apply weight decay to. If none is passed, weight decay is applied to all parameters by default (unless they are in :obj:`exclude_from_weight_decay`). exclude_from_weight_decay (:obj:`List[str]`, `optional`): List of the parameter names (or re patterns) to exclude from applying weight decay to. If a :obj:`include_in_weight_decay` is passed, the names in it will supersede this list. name (:obj:`str`, `optional`, defaults to 'AdamWeightDecay'): Optional name for the operations created when applying gradients. kwargs: Keyward arguments. Allowed to be {``clipnorm``, ``clipvalue``, ``lr``, ``decay``}. ``clipnorm`` is clip gradients by norm; ``clipvalue`` is clip gradients by value, ``decay`` is included for backward compatibility to allow time inverse decay of learning rate. ``lr`` is included for backward compatibility, recommended to use ``learning_rate`` instead. ``` """ def __init__( self, learning_rate: Union[ float, tf.keras.optimizers.schedules.LearningRateSchedule ] = 0.001, beta_1: float = 0.9, beta_2: float = 0.999, epsilon: float = 1e-7, amsgrad: bool = False, weight_decay_rate: float = 0.0, include_in_weight_decay: Optional[List[str]] = None, exclude_from_weight_decay: Optional[List[str]] = None, name: str = "AdamWeightDecay", **kwargs ): super().__init__( learning_rate, beta_1, beta_2, epsilon, amsgrad, name, **kwargs ) self.weight_decay_rate = weight_decay_rate self._include_in_weight_decay = include_in_weight_decay self._exclude_from_weight_decay = exclude_from_weight_decay @classmethod def from_config(cls, config): """Creates an optimizer from its config with WarmUp custom object.""" custom_objects = {"WarmUp": WarmUp} return super(AdamWeightDecay, cls).from_config( config, custom_objects=custom_objects ) def _prepare_local(self, var_device, var_dtype, apply_state): super(AdamWeightDecay, self)._prepare_local(var_device, var_dtype, apply_state) apply_state[(var_device, var_dtype)]["weight_decay_rate"] = tf.constant( self.weight_decay_rate, name="adam_weight_decay_rate" ) def _decay_weights_op(self, var, learning_rate, apply_state): do_decay = self._do_use_weight_decay(var.name) if do_decay: return var.assign_sub( learning_rate * var * apply_state[(var.device, var.dtype.base_dtype)]["weight_decay_rate"], use_locking=self._use_locking, ) return tf.no_op() def apply_gradients(self, grads_and_vars, name=None, **kwargs): # 2020-07-05: added **kwargs based on https://github.com/tensorflow/addons/issues/1267 grads, tvars = list(zip(*grads_and_vars)) return super(AdamWeightDecay, self).apply_gradients( zip(grads, tvars), name=name, ) def _get_lr(self, var_device, var_dtype, apply_state): """Retrieves the learning rate with the given state.""" if apply_state is None: return self._decayed_lr_t[var_dtype], {} apply_state = apply_state or {} coefficients = apply_state.get((var_device, var_dtype)) if coefficients is None: coefficients = self._fallback_apply_state(var_device, var_dtype) apply_state[(var_device, var_dtype)] = coefficients return coefficients["lr_t"], dict(apply_state=apply_state) def _resource_apply_dense(self, grad, var, apply_state=None): lr_t, kwargs = self._get_lr(var.device, var.dtype.base_dtype, apply_state) decay = self._decay_weights_op(var, lr_t, apply_state) with tf.control_dependencies([decay]): return super(AdamWeightDecay, self)._resource_apply_dense( grad, var, **kwargs ) def _resource_apply_sparse(self, grad, var, indices, apply_state=None): lr_t, kwargs = self._get_lr(var.device, var.dtype.base_dtype, apply_state) decay = self._decay_weights_op(var, lr_t, apply_state) with tf.control_dependencies([decay]): return super(AdamWeightDecay, self)._resource_apply_sparse( grad, var, indices, **kwargs ) def get_config(self): config = super().get_config() config.update({"weight_decay_rate": self.weight_decay_rate}) return config def _do_use_weight_decay(self, param_name): """Whether to use L2 weight decay for `param_name`.""" if self.weight_decay_rate == 0: return False if self._include_in_weight_decay: for r in self._include_in_weight_decay: if re.search(r, param_name) is not None: return True if self._exclude_from_weight_decay: for r in self._exclude_from_weight_decay: if re.search(r, param_name) is not None: return False return True
Ancestors
- keras.optimizers.optimizer_v2.adam.Adam
- keras.optimizers.optimizer_v2.optimizer_v2.OptimizerV2
- tensorflow.python.trackable.base.Trackable
Static methods
def from_config(config)
-
Creates an optimizer from its config with WarmUp custom object.
Expand source code
@classmethod def from_config(cls, config): """Creates an optimizer from its config with WarmUp custom object.""" custom_objects = {"WarmUp": WarmUp} return super(AdamWeightDecay, cls).from_config( config, custom_objects=custom_objects )
Methods
def apply_gradients(self, grads_and_vars, name=None, **kwargs)
-
Apply gradients to variables.
This is the second part of
minimize()
. It returns anOperation
that applies gradients.The method sums gradients from all replicas in the presence of
tf.distribute.Strategy
by default. You can aggregate gradients yourself by passingexperimental_aggregate_gradients=False
.Example:
grads = tape.gradient(loss, vars) grads = tf.distribute.get_replica_context().all_reduce('sum', grads) # Processing aggregated gradients. optimizer.apply_gradients(zip(grads, vars), experimental_aggregate_gradients=False)
Args
grads_and_vars
- List of (gradient, variable) pairs.
name
- Optional name for the returned operation. Default to the name
passed to the
Optimizer
constructor. experimental_aggregate_gradients
- Whether to sum gradients from
different replicas in the presence of
tf.distribute.Strategy
. If False, it's user responsibility to aggregate the gradients. Default to True.
Returns
An
Operation
that applies the specified gradients. Theiterations
will be automatically increased by 1.Raises
TypeError
- If
grads_and_vars
is malformed. ValueError
- If none of the variables have gradients.
RuntimeError
- If called in a cross-replica context.
Expand source code
def apply_gradients(self, grads_and_vars, name=None, **kwargs): # 2020-07-05: added **kwargs based on https://github.com/tensorflow/addons/issues/1267 grads, tvars = list(zip(*grads_and_vars)) return super(AdamWeightDecay, self).apply_gradients( zip(grads, tvars), name=name, )
def get_config(self)
-
Returns the config of the optimizer.
An optimizer config is a Python dictionary (serializable) containing the configuration of an optimizer. The same optimizer can be reinstantiated later (without any saved state) from this configuration.
Returns
Python dictionary.
Expand source code
def get_config(self): config = super().get_config() config.update({"weight_decay_rate": self.weight_decay_rate}) return config
class GradientAccumulator
-
Gradient accumulation utility. When used with a distribution strategy, the accumulator should be called in a replica context. Gradients will be accumulated locally on each replica and without synchronization. Users should then call
.gradients
, scale the gradients if required, and pass the result toapply_gradients
.Initializes the accumulator.
Expand source code
class GradientAccumulator(object): """Gradient accumulation utility. When used with a distribution strategy, the accumulator should be called in a replica context. Gradients will be accumulated locally on each replica and without synchronization. Users should then call ``.gradients``, scale the gradients if required, and pass the result to ``apply_gradients``. """ # We use the ON_READ synchronization policy so that no synchronization is # performed on assignment. To get the value, we call .value() which returns the # value on the current replica without synchronization. def __init__(self): """Initializes the accumulator.""" self._gradients = [] self._accum_steps = None @property def step(self): """Number of accumulated steps.""" if self._accum_steps is None: self._accum_steps = tf.Variable( tf.constant(0, dtype=tf.int64), trainable=False, synchronization=tf.VariableSynchronization.ON_READ, aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA, ) return self._accum_steps.value() @property def gradients(self): """The accumulated gradients on the current replica.""" if not self._gradients: raise ValueError( "The accumulator should be called first to initialize the gradients" ) return list( gradient.value() if gradient is not None else gradient for gradient in self._gradients ) def __call__(self, gradients): """Accumulates :obj:`gradients` on the current replica.""" if not self._gradients: _ = self.step # Create the step variable. self._gradients.extend( [ ( tf.Variable( tf.zeros_like(gradient), trainable=False, synchronization=tf.VariableSynchronization.ON_READ, aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA, ) if gradient is not None else gradient ) for gradient in gradients ] ) if len(gradients) != len(self._gradients): raise ValueError( "Expected %s gradients, but got %d" % (len(self._gradients), len(gradients)) ) for accum_gradient, gradient in zip(self._gradients, gradients): if accum_gradient is not None and gradient is not None: accum_gradient.assign_add(gradient) self._accum_steps.assign_add(1) def reset(self): """Resets the accumulated gradients on the current replica.""" if not self._gradients: return self._accum_steps.assign(0) for gradient in self._gradients: if gradient is not None: gradient.assign(tf.zeros_like(gradient))
Instance variables
var gradients
-
The accumulated gradients on the current replica.
Expand source code
@property def gradients(self): """The accumulated gradients on the current replica.""" if not self._gradients: raise ValueError( "The accumulator should be called first to initialize the gradients" ) return list( gradient.value() if gradient is not None else gradient for gradient in self._gradients )
var step
-
Number of accumulated steps.
Expand source code
@property def step(self): """Number of accumulated steps.""" if self._accum_steps is None: self._accum_steps = tf.Variable( tf.constant(0, dtype=tf.int64), trainable=False, synchronization=tf.VariableSynchronization.ON_READ, aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA, ) return self._accum_steps.value()
Methods
def reset(self)
-
Resets the accumulated gradients on the current replica.
Expand source code
def reset(self): """Resets the accumulated gradients on the current replica.""" if not self._gradients: return self._accum_steps.assign(0) for gradient in self._gradients: if gradient is not None: gradient.assign(tf.zeros_like(gradient))
class WarmUp (initial_learning_rate: float, decay_schedule_fn: Callable, warmup_steps: int, power: float = 1.0, name: str = None)
-
Applies a warmup schedule on a given learning rate decay schedule. Args: initial_learning_rate (:obj:`float`): The initial learning rate for the schedule after the warmup (so this will be the learning rate at the end of the warmup). decay_schedule_fn (:obj:`Callable`): The schedule function to apply after the warmup for the rest of training. warmup_steps (:obj:`int`): The number of steps for the warmup part of training. power (:obj:`float`, `optional`, defaults to 1): The power to use for the polynomial warmup (defaults is a linear warmup). name (:obj:`str`, `optional`): Optional name prefix for the returned tensors during the schedule.
Expand source code
class WarmUp(tf.keras.optimizers.schedules.LearningRateSchedule): """ ``` Applies a warmup schedule on a given learning rate decay schedule. Args: initial_learning_rate (:obj:`float`): The initial learning rate for the schedule after the warmup (so this will be the learning rate at the end of the warmup). decay_schedule_fn (:obj:`Callable`): The schedule function to apply after the warmup for the rest of training. warmup_steps (:obj:`int`): The number of steps for the warmup part of training. power (:obj:`float`, `optional`, defaults to 1): The power to use for the polynomial warmup (defaults is a linear warmup). name (:obj:`str`, `optional`): Optional name prefix for the returned tensors during the schedule. ``` """ def __init__( self, initial_learning_rate: float, decay_schedule_fn: Callable, warmup_steps: int, power: float = 1.0, name: str = None, ): super().__init__() self.initial_learning_rate = initial_learning_rate self.warmup_steps = warmup_steps self.power = power self.decay_schedule_fn = decay_schedule_fn self.name = name def __call__(self, step): with tf.name_scope(self.name or "WarmUp") as name: # Implements polynomial warmup. i.e., if global_step < warmup_steps, the # learning rate will be `global_step/num_warmup_steps * init_lr`. global_step_float = tf.cast(step, tf.float32) warmup_steps_float = tf.cast(self.warmup_steps, tf.float32) warmup_percent_done = global_step_float / warmup_steps_float warmup_learning_rate = self.initial_learning_rate * tf.math.pow( warmup_percent_done, self.power ) return tf.cond( global_step_float < warmup_steps_float, lambda: warmup_learning_rate, lambda: self.decay_schedule_fn(step - self.warmup_steps), name=name, ) def get_config(self): return { "initial_learning_rate": self.initial_learning_rate, "decay_schedule_fn": self.decay_schedule_fn, "warmup_steps": self.warmup_steps, "power": self.power, "name": self.name, }
Ancestors
- keras.optimizers.schedules.learning_rate_schedule.LearningRateSchedule
Methods
def get_config(self)
-
Expand source code
def get_config(self): return { "initial_learning_rate": self.initial_learning_rate, "decay_schedule_fn": self.decay_schedule_fn, "warmup_steps": self.warmup_steps, "power": self.power, "name": self.name, }