Module ktrain.tabular.preprocessor

Expand source code
from .. import utils as U
from ..imports import *
from ..preprocessor import Preprocessor


class TabularPreprocessor(Preprocessor):
    """
    ```
    Tabular preprocessing base class
    ```
    """

    def __init__(
        self,
        predictor_columns,
        label_columns,
        date_columns=[],
        is_regression=False,
        procs=[],
        max_card=20,
    ):
        self.is_regression = is_regression
        self.c = None
        self.pc = predictor_columns
        self.lc = label_columns
        self.lc = [self.lc] if isinstance(self.lc, str) else self.lc
        self.dc = date_columns
        self.label_columns = None
        self.cat_names = []
        self.cont_names = []
        self.date_names = []
        self.label_transform = None
        self.procs = procs
        self.max_card = max_card

    @property
    def na_names(self):
        return [n for n in self.cat_names if n[-3:] == "_na"]

    def get_preprocessor(self):
        return (self.label_transform, self.procs)

    def get_classes(self):
        return self.label_columns if not self.is_regression else []

    def preprocess(self, df):
        return self.preprocess_test(df)

    def _validate_columns(self, df):
        missing_columns = []
        for col in df.columns.values:
            if col not in self.lc and col not in self.pc:
                missing_columns.append(col)
        if len(missing_columns) > 0:
            raise ValueError("df is missing columns: %s" % (missing_columns))
        return

    def denormalize(self, df):
        normalizer = None
        for proc in self.procs:
            if type(proc).__name__ == "Normalize":
                normalizer = proc
                break
        if normalizer is None:
            return df
        return normalizer.revert(df)

    # def codify(self, df):
    # df = df.copy()
    # for lab in self.lc:
    # df[lab] = df[lab].cat.codes
    # return df

    def preprocess_train(self, df, mode="train", verbose=1):
        """
        ```
        preprocess training set
        ```
        """
        df = df.copy()

        clean_df(df, pc=self.pc, lc=self.lc, check_labels=mode == "train")

        if not isinstance(df, pd.DataFrame):
            raise ValueError("df must be a pd.DataFrame")

        # validate columns
        self._validate_columns(df)

        # validate mode
        # if mode != 'train' and self.label_transform is None:
        # raise ValueError('self.label_transform is None but mode is %s: are you sure preprocess_train was invoked first?' % (mode))

        # verbose
        if verbose:
            print(
                "processing %s: %s rows x %s columns" % (mode, df.shape[0], df.shape[1])
            )

        # convert date fields
        for field in self.dc:
            df = df.copy()  # TODO: fix this
            df, date_names = add_datepart(df, field)
            self.date_names = date_names

        # preprocess labels and data
        if mode == "train":
            label_columns = self.lc[:]
            # label_columns.sort() # leave label columns sorted in same order as in DataFrame
            self.label_transform = U.YTransformDataFrame(
                label_columns, is_regression=self.is_regression
            )
            df = self.label_transform.apply_train(df)
            self.label_columns = (
                self.label_transform.get_classes()
                if not self.is_regression
                else self.label_transform.label_columns
            )
            self.cont_names, self.cat_names = cont_cat_split(
                df, label_columns=self.label_columns, max_card=self.max_card
            )
            self.procs = [
                proc(self.cat_names, self.cont_names) for proc in self.procs
            ]  # "objectivy"
        else:
            df = self.label_transform.apply_test(df)
        for proc in self.procs:
            proc(df, test=mode != "train")  # apply processors
        from .dataset import TabularDataset

        return TabularDataset(df, self.cat_names, self.cont_names, self.label_columns)

    def preprocess_valid(self, df, verbose=1):
        """
        ```
        preprocess validation set
        ```
        """
        return self.preprocess_train(df, mode="valid", verbose=verbose)

    def preprocess_test(self, df, verbose=1):
        """
        ```
        preprocess test set
        ```
        """
        return self.preprocess_train(df, mode="test", verbose=verbose)


def pd_data_types(df, return_df=False):
    """
    ```
    infers data type of each column in Pandas DataFrame
    Args:
      df(pd.DataFrame): pandas DataFrame
      return_df(bool): If True, returns columns and types in DataFrame.
                       Otherwise, a dictionary is returned.
    ```
    """

    infer_type = lambda x: pd.api.types.infer_dtype(x, skipna=True)
    df.apply(infer_type, axis=0)

    # DataFrame with column names & new types
    df_types = (
        pd.DataFrame(df.apply(pd.api.types.infer_dtype, axis=0))
        .reset_index()
        .rename(columns={"index": "column", 0: "type"})
    )
    if return_df:
        return df_types
    cols = list(df_types["column"].values)
    col_types = list(df_types["type"].values)
    return dict(list(zip(cols, col_types)))


def clean_df(
    train_df, val_df=None, pc=[], lc=[], check_labels=True, return_types=False
):
    train_type_dict = pd_data_types(train_df)
    for k, v in train_type_dict.items():
        if v != "string":
            continue
        train_df[k] = train_df[k].str.strip()
        if val_df is not None:
            if k not in val_df.columns:
                raise ValueError("val_df is missing %s column" % (k))
            val_df[k] = val_df[k].str.strip()
    if (pc and not lc) or (not pc and lc):
        raise ValueError("pc and lc: both or neither must exist")
    if pc and lc:
        inp_cols = (
            train_df.columns.values
            if check_labels
            else [col for col in train_df.columns.values if col not in lc]
        )
        original_cols = pc + lc if check_labels else pc
        if set(original_cols) != set(inp_cols):
            raise ValueError(
                "DataFrame is either missing columns or includes extra columns: \n"
                + "expected: %s\nactual: %s" % (original_cols, inp_cols)
            )
    if return_types:
        return train_type_dict
    return


# --------------------------------------------------------------------
# These are helper functions adapted from fastai:
# https://github.com/fastai/fastai
# -------------------------------------------------------------------


from numbers import Number
from types import SimpleNamespace
from typing import (
    Any,
    AnyStr,
    Callable,
    Collection,
    Dict,
    Hashable,
    Iterator,
    List,
    Mapping,
    NewType,
    Optional,
    Sequence,
    Tuple,
    TypeVar,
    Union,
)

from pandas.api.types import is_categorical_dtype, is_numeric_dtype


def ifnone(a, b):
    "`a` if `a` is not None, otherwise `b`."
    return b if a is None else a


def make_date(df, date_field):
    """
    Make sure `df[field_name]` is of the right date type.
    Reference: https://github.com/fastai/fastai
    """
    field_dtype = df[date_field].dtype
    if isinstance(field_dtype, pd.core.dtypes.dtypes.DatetimeTZDtype):
        field_dtype = np.datetime64
    if not np.issubdtype(field_dtype, np.datetime64):
        df[date_field] = pd.to_datetime(df[date_field], infer_datetime_format=True)
    return


def cont_cat_split(df, max_card=20, label_columns=[]):
    "Helper function that returns column names of cont and cat variables from given df."
    cont_names, cat_names = [], []
    for col in df:
        if col in label_columns:
            continue
        if (
            df[col].dtype == int
            and df[col].unique().shape[0] > max_card
            or df[col].dtype == float
        ):
            cont_names.append(col)
        else:
            cat_names.append(col)
    return cont_names, cat_names


def add_datepart(
    df: pd.DataFrame,
    field_name: str,
    prefix: str = None,
    drop: bool = True,
    time: bool = False,
    return_added_columns=True,
):
    "Helper function that adds columns relevant to a date in the column `field_name` of `df`."
    make_date(df, field_name)
    field = df[field_name]
    prefix = ifnone(prefix, re.sub("[Dd]ate$", "", field_name))
    attr = [
        "Year",
        "Month",
        "Week",
        "Day",
        "Dayofweek",
        "Dayofyear",
        "Is_month_end",
        "Is_month_start",
        "Is_quarter_end",
        "Is_quarter_start",
        "Is_year_end",
        "Is_year_start",
    ]
    if time:
        attr = attr + ["Hour", "Minute", "Second"]
    added_columns = []
    for n in attr:
        df[prefix + n] = getattr(field.dt, n.lower())
        added_columns.append(prefix + n)
    df[prefix + "Elapsed"] = field.astype(np.int64) // 10**9
    if drop:
        df.drop(field_name, axis=1, inplace=True)
    if return_added_columns:
        return (df, added_columns)
    else:
        return df


def cyclic_dt_feat_names(time: bool = True, add_linear: bool = False) -> List[str]:
    "Return feature names of date/time cycles as produced by `cyclic_dt_features`."
    fs = ["cos", "sin"]
    attr = [
        f"{r}_{f}" for r in "weekday day_month month_year day_year".split() for f in fs
    ]
    if time:
        attr += [f"{r}_{f}" for r in "hour clock min sec".split() for f in fs]
    if add_linear:
        attr.append("year_lin")
    return attr


def cyclic_dt_features(d, time: bool = True, add_linear: bool = False) -> List[float]:
    "Calculate the cos and sin of date/time cycles."
    tt, fs = d.timetuple(), [np.cos, np.sin]
    day_year, days_month = tt.tm_yday, calendar.monthrange(d.year, d.month)[1]
    days_year = 366 if calendar.isleap(d.year) else 365
    rs = (
        d.weekday() / 7,
        (d.day - 1) / days_month,
        (d.month - 1) / 12,
        (day_year - 1) / days_year,
    )
    feats = [f(r * 2 * np.pi) for r in rs for f in fs]
    if time and isinstance(d, datetime) and type(d) != date:
        rs = tt.tm_hour / 24, tt.tm_hour % 12 / 12, tt.tm_min / 60, tt.tm_sec / 60
        feats += [f(r * 2 * np.pi) for r in rs for f in fs]
    if add_linear:
        if type(d) == date:
            feats.append(d.year + rs[-1])
        else:
            secs_in_year = (
                datetime(d.year + 1, 1, 1) - datetime(d.year, 1, 1)
            ).total_seconds()
            feats.append(
                d.year + ((d - datetime(d.year, 1, 1)).total_seconds() / secs_in_year)
            )
    return feats


def add_cyclic_datepart(
    df: pd.DataFrame,
    field_name: str,
    prefix: str = None,
    drop: bool = True,
    time: bool = False,
    add_linear: bool = False,
):
    "Helper function that adds trigonometric date/time features to a date in the column `field_name` of `df`."
    make_date(df, field_name)
    field = df[field_name]
    prefix = ifnone(prefix, re.sub("[Dd]ate$", "", field_name))
    series = field.apply(partial(cyclic_dt_features, time=time, add_linear=add_linear))
    columns = [prefix + c for c in cyclic_dt_feat_names(time, add_linear)]
    df_feats = pd.DataFrame(
        [item for item in series], columns=columns, index=series.index
    )
    for column in columns:
        df[column] = df_feats[column]
    if drop:
        df.drop(field_name, axis=1, inplace=True)
    return df


class TabularProc:
    "A processor for tabular dataframes."

    def __init__(self, cat_names, cont_names):
        self.cat_names = cat_names
        self.cont_names = cont_names

    def __call__(self, df, test=False):
        "Apply the correct function to `df` depending on `test`."
        func = self.apply_test if test else self.apply_train
        func(df)

    def apply_train(self, df):
        "Function applied to `df` if it's the train set."
        raise NotImplementedError

    def apply_test(self, df):
        "Function applied to `df` if it's the test set."
        self.apply_train(df)


class Categorify(TabularProc):
    def __init__(self, cat_names, cont_names):
        super().__init__(cat_names, cont_names)
        self.categories = None

    def apply_train(self, df):
        self.categories = {}
        for n in self.cat_names:
            df[n] = df[n].astype("category").cat.as_ordered()
            self.categories[n] = df[n].cat.categories

    def apply_test(self, df):
        for n in self.cat_names:
            df[n] = pd.Categorical(df[n], categories=self.categories[n], ordered=True)


FILL_MEDIAN = "median"
FILL_CONSTANT = "constant"


class FillMissing(TabularProc):
    "Fill the missing values in continuous columns."

    def __init__(
        self,
        cat_names,
        cont_names,
        fill_strategy=FILL_MEDIAN,
        add_col=True,
        fill_val=0.0,
    ):
        super().__init__(cat_names, cont_names)
        self.fill_strategy = fill_strategy
        self.add_col = add_col
        self.fill_val = fill_val
        self.na_dict = None

    def apply_train(self, df):
        self.na_dict = {}
        self.filler_dict = {}
        for name in self.cont_names:
            if self.fill_strategy == FILL_MEDIAN:
                filler = df[name].median()
            elif self.fill_strategy == FILL_CONSTANT:
                filler = self.fill_val
            else:
                filler = df[name].dropna().value_counts().idxmax()
            self.filler_dict[name] = filler
            if pd.isnull(df[name]).sum():
                if self.add_col:
                    df[name + "_na"] = pd.isnull(df[name])
                    if name + "_na" not in self.cat_names:
                        self.cat_names.append(name + "_na")
                df[name] = df[name].fillna(filler)
                self.na_dict[name] = True

    def apply_test(self, df):
        "Fill missing values in `self.cont_names` like in `apply_train`."
        for name in self.cont_names:
            if name in self.na_dict:
                if self.add_col:
                    df[name + "_na"] = pd.isnull(df[name])
                    if name + "_na" not in self.cat_names:
                        self.cat_names.append(name + "_na")
                df[name] = df[name].fillna(self.filler_dict[name])
            elif pd.isnull(df[name]).sum() != 0:
                warnings.warn(
                    f"""There are nan values in field {name} but there were none in the training set.
                Filled with {self.fill_strategy}."""
                )
                df[name] = df[name].fillna(self.filler_dict[name])
                # raise Exception(f"""There are nan values in field {name} but there were none in the training set.
                # Please fix those manually.""")


class Normalize(TabularProc):
    "Normalize the continuous variables."

    def __init__(self, cat_names, cont_names):
        super().__init__(cat_names, cont_names)
        self.means = None
        self.stds = None

    def apply_train(self, df):
        "Compute the means and stds of `self.cont_names` columns to normalize them."
        self.means, self.stds = {}, {}
        for n in self.cont_names:
            assert is_numeric_dtype(
                df[n]
            ), f"""Cannot normalize '{n}' column as it isn't numerical.
                Are you sure it doesn't belong in the categorical set of columns?"""
            self.means[n], self.stds[n] = df[n].mean(), df[n].std()
            df[n] = (df[n] - self.means[n]) / (1e-7 + self.stds[n])

    def apply_test(self, df):
        "Normalize `self.cont_names` with the same statistics as in `apply_train`."
        for n in self.cont_names:
            df[n] = (df[n] - self.means[n]) / (1e-7 + self.stds[n])

    def revert(self, df):
        """
        Undoes normalization and returns reverted dataframe
        """
        out_df = df.copy()
        for n in self.cont_names:
            out_df[n] = (df[n] * (1e-7 + self.stds[n])) + self.means[n]
        return out_df

Functions

def add_cyclic_datepart(df: pandas.core.frame.DataFrame, field_name: str, prefix: str = None, drop: bool = True, time: bool = False, add_linear: bool = False)

Helper function that adds trigonometric date/time features to a date in the column field_name of df.

Expand source code
def add_cyclic_datepart(
    df: pd.DataFrame,
    field_name: str,
    prefix: str = None,
    drop: bool = True,
    time: bool = False,
    add_linear: bool = False,
):
    "Helper function that adds trigonometric date/time features to a date in the column `field_name` of `df`."
    make_date(df, field_name)
    field = df[field_name]
    prefix = ifnone(prefix, re.sub("[Dd]ate$", "", field_name))
    series = field.apply(partial(cyclic_dt_features, time=time, add_linear=add_linear))
    columns = [prefix + c for c in cyclic_dt_feat_names(time, add_linear)]
    df_feats = pd.DataFrame(
        [item for item in series], columns=columns, index=series.index
    )
    for column in columns:
        df[column] = df_feats[column]
    if drop:
        df.drop(field_name, axis=1, inplace=True)
    return df
def add_datepart(df: pandas.core.frame.DataFrame, field_name: str, prefix: str = None, drop: bool = True, time: bool = False, return_added_columns=True)

Helper function that adds columns relevant to a date in the column field_name of df.

Expand source code
def add_datepart(
    df: pd.DataFrame,
    field_name: str,
    prefix: str = None,
    drop: bool = True,
    time: bool = False,
    return_added_columns=True,
):
    "Helper function that adds columns relevant to a date in the column `field_name` of `df`."
    make_date(df, field_name)
    field = df[field_name]
    prefix = ifnone(prefix, re.sub("[Dd]ate$", "", field_name))
    attr = [
        "Year",
        "Month",
        "Week",
        "Day",
        "Dayofweek",
        "Dayofyear",
        "Is_month_end",
        "Is_month_start",
        "Is_quarter_end",
        "Is_quarter_start",
        "Is_year_end",
        "Is_year_start",
    ]
    if time:
        attr = attr + ["Hour", "Minute", "Second"]
    added_columns = []
    for n in attr:
        df[prefix + n] = getattr(field.dt, n.lower())
        added_columns.append(prefix + n)
    df[prefix + "Elapsed"] = field.astype(np.int64) // 10**9
    if drop:
        df.drop(field_name, axis=1, inplace=True)
    if return_added_columns:
        return (df, added_columns)
    else:
        return df
def clean_df(train_df, val_df=None, pc=[], lc=[], check_labels=True, return_types=False)
Expand source code
def clean_df(
    train_df, val_df=None, pc=[], lc=[], check_labels=True, return_types=False
):
    train_type_dict = pd_data_types(train_df)
    for k, v in train_type_dict.items():
        if v != "string":
            continue
        train_df[k] = train_df[k].str.strip()
        if val_df is not None:
            if k not in val_df.columns:
                raise ValueError("val_df is missing %s column" % (k))
            val_df[k] = val_df[k].str.strip()
    if (pc and not lc) or (not pc and lc):
        raise ValueError("pc and lc: both or neither must exist")
    if pc and lc:
        inp_cols = (
            train_df.columns.values
            if check_labels
            else [col for col in train_df.columns.values if col not in lc]
        )
        original_cols = pc + lc if check_labels else pc
        if set(original_cols) != set(inp_cols):
            raise ValueError(
                "DataFrame is either missing columns or includes extra columns: \n"
                + "expected: %s\nactual: %s" % (original_cols, inp_cols)
            )
    if return_types:
        return train_type_dict
    return
def cont_cat_split(df, max_card=20, label_columns=[])

Helper function that returns column names of cont and cat variables from given df.

Expand source code
def cont_cat_split(df, max_card=20, label_columns=[]):
    "Helper function that returns column names of cont and cat variables from given df."
    cont_names, cat_names = [], []
    for col in df:
        if col in label_columns:
            continue
        if (
            df[col].dtype == int
            and df[col].unique().shape[0] > max_card
            or df[col].dtype == float
        ):
            cont_names.append(col)
        else:
            cat_names.append(col)
    return cont_names, cat_names
def cyclic_dt_feat_names(time: bool = True, add_linear: bool = False) ‑> List[str]

Return feature names of date/time cycles as produced by cyclic_dt_features().

Expand source code
def cyclic_dt_feat_names(time: bool = True, add_linear: bool = False) -> List[str]:
    "Return feature names of date/time cycles as produced by `cyclic_dt_features`."
    fs = ["cos", "sin"]
    attr = [
        f"{r}_{f}" for r in "weekday day_month month_year day_year".split() for f in fs
    ]
    if time:
        attr += [f"{r}_{f}" for r in "hour clock min sec".split() for f in fs]
    if add_linear:
        attr.append("year_lin")
    return attr
def cyclic_dt_features(d, time: bool = True, add_linear: bool = False) ‑> List[float]

Calculate the cos and sin of date/time cycles.

Expand source code
def cyclic_dt_features(d, time: bool = True, add_linear: bool = False) -> List[float]:
    "Calculate the cos and sin of date/time cycles."
    tt, fs = d.timetuple(), [np.cos, np.sin]
    day_year, days_month = tt.tm_yday, calendar.monthrange(d.year, d.month)[1]
    days_year = 366 if calendar.isleap(d.year) else 365
    rs = (
        d.weekday() / 7,
        (d.day - 1) / days_month,
        (d.month - 1) / 12,
        (day_year - 1) / days_year,
    )
    feats = [f(r * 2 * np.pi) for r in rs for f in fs]
    if time and isinstance(d, datetime) and type(d) != date:
        rs = tt.tm_hour / 24, tt.tm_hour % 12 / 12, tt.tm_min / 60, tt.tm_sec / 60
        feats += [f(r * 2 * np.pi) for r in rs for f in fs]
    if add_linear:
        if type(d) == date:
            feats.append(d.year + rs[-1])
        else:
            secs_in_year = (
                datetime(d.year + 1, 1, 1) - datetime(d.year, 1, 1)
            ).total_seconds()
            feats.append(
                d.year + ((d - datetime(d.year, 1, 1)).total_seconds() / secs_in_year)
            )
    return feats
def ifnone(a, b)

a if a is not None, otherwise b.

Expand source code
def ifnone(a, b):
    "`a` if `a` is not None, otherwise `b`."
    return b if a is None else a
def make_date(df, date_field)

Make sure df[field_name] is of the right date type. Reference: https://github.com/fastai/fastai

Expand source code
def make_date(df, date_field):
    """
    Make sure `df[field_name]` is of the right date type.
    Reference: https://github.com/fastai/fastai
    """
    field_dtype = df[date_field].dtype
    if isinstance(field_dtype, pd.core.dtypes.dtypes.DatetimeTZDtype):
        field_dtype = np.datetime64
    if not np.issubdtype(field_dtype, np.datetime64):
        df[date_field] = pd.to_datetime(df[date_field], infer_datetime_format=True)
    return
def pd_data_types(df, return_df=False)
infers data type of each column in Pandas DataFrame
Args:
  df(pd.DataFrame): pandas DataFrame
  return_df(bool): If True, returns columns and types in DataFrame.
                   Otherwise, a dictionary is returned.
Expand source code
def pd_data_types(df, return_df=False):
    """
    ```
    infers data type of each column in Pandas DataFrame
    Args:
      df(pd.DataFrame): pandas DataFrame
      return_df(bool): If True, returns columns and types in DataFrame.
                       Otherwise, a dictionary is returned.
    ```
    """

    infer_type = lambda x: pd.api.types.infer_dtype(x, skipna=True)
    df.apply(infer_type, axis=0)

    # DataFrame with column names & new types
    df_types = (
        pd.DataFrame(df.apply(pd.api.types.infer_dtype, axis=0))
        .reset_index()
        .rename(columns={"index": "column", 0: "type"})
    )
    if return_df:
        return df_types
    cols = list(df_types["column"].values)
    col_types = list(df_types["type"].values)
    return dict(list(zip(cols, col_types)))

Classes

class Categorify (cat_names, cont_names)

A processor for tabular dataframes.

Expand source code
class Categorify(TabularProc):
    def __init__(self, cat_names, cont_names):
        super().__init__(cat_names, cont_names)
        self.categories = None

    def apply_train(self, df):
        self.categories = {}
        for n in self.cat_names:
            df[n] = df[n].astype("category").cat.as_ordered()
            self.categories[n] = df[n].cat.categories

    def apply_test(self, df):
        for n in self.cat_names:
            df[n] = pd.Categorical(df[n], categories=self.categories[n], ordered=True)

Ancestors

Inherited members

class FillMissing (cat_names, cont_names, fill_strategy='median', add_col=True, fill_val=0.0)

Fill the missing values in continuous columns.

Expand source code
class FillMissing(TabularProc):
    "Fill the missing values in continuous columns."

    def __init__(
        self,
        cat_names,
        cont_names,
        fill_strategy=FILL_MEDIAN,
        add_col=True,
        fill_val=0.0,
    ):
        super().__init__(cat_names, cont_names)
        self.fill_strategy = fill_strategy
        self.add_col = add_col
        self.fill_val = fill_val
        self.na_dict = None

    def apply_train(self, df):
        self.na_dict = {}
        self.filler_dict = {}
        for name in self.cont_names:
            if self.fill_strategy == FILL_MEDIAN:
                filler = df[name].median()
            elif self.fill_strategy == FILL_CONSTANT:
                filler = self.fill_val
            else:
                filler = df[name].dropna().value_counts().idxmax()
            self.filler_dict[name] = filler
            if pd.isnull(df[name]).sum():
                if self.add_col:
                    df[name + "_na"] = pd.isnull(df[name])
                    if name + "_na" not in self.cat_names:
                        self.cat_names.append(name + "_na")
                df[name] = df[name].fillna(filler)
                self.na_dict[name] = True

    def apply_test(self, df):
        "Fill missing values in `self.cont_names` like in `apply_train`."
        for name in self.cont_names:
            if name in self.na_dict:
                if self.add_col:
                    df[name + "_na"] = pd.isnull(df[name])
                    if name + "_na" not in self.cat_names:
                        self.cat_names.append(name + "_na")
                df[name] = df[name].fillna(self.filler_dict[name])
            elif pd.isnull(df[name]).sum() != 0:
                warnings.warn(
                    f"""There are nan values in field {name} but there were none in the training set.
                Filled with {self.fill_strategy}."""
                )
                df[name] = df[name].fillna(self.filler_dict[name])
                # raise Exception(f"""There are nan values in field {name} but there were none in the training set.
                # Please fix those manually.""")

Ancestors

Methods

def apply_test(self, df)

Fill missing values in self.cont_names like in apply_train.

Expand source code
def apply_test(self, df):
    "Fill missing values in `self.cont_names` like in `apply_train`."
    for name in self.cont_names:
        if name in self.na_dict:
            if self.add_col:
                df[name + "_na"] = pd.isnull(df[name])
                if name + "_na" not in self.cat_names:
                    self.cat_names.append(name + "_na")
            df[name] = df[name].fillna(self.filler_dict[name])
        elif pd.isnull(df[name]).sum() != 0:
            warnings.warn(
                f"""There are nan values in field {name} but there were none in the training set.
            Filled with {self.fill_strategy}."""
            )
            df[name] = df[name].fillna(self.filler_dict[name])
            # raise Exception(f"""There are nan values in field {name} but there were none in the training set.
            # Please fix those manually.""")

Inherited members

class Normalize (cat_names, cont_names)

Normalize the continuous variables.

Expand source code
class Normalize(TabularProc):
    "Normalize the continuous variables."

    def __init__(self, cat_names, cont_names):
        super().__init__(cat_names, cont_names)
        self.means = None
        self.stds = None

    def apply_train(self, df):
        "Compute the means and stds of `self.cont_names` columns to normalize them."
        self.means, self.stds = {}, {}
        for n in self.cont_names:
            assert is_numeric_dtype(
                df[n]
            ), f"""Cannot normalize '{n}' column as it isn't numerical.
                Are you sure it doesn't belong in the categorical set of columns?"""
            self.means[n], self.stds[n] = df[n].mean(), df[n].std()
            df[n] = (df[n] - self.means[n]) / (1e-7 + self.stds[n])

    def apply_test(self, df):
        "Normalize `self.cont_names` with the same statistics as in `apply_train`."
        for n in self.cont_names:
            df[n] = (df[n] - self.means[n]) / (1e-7 + self.stds[n])

    def revert(self, df):
        """
        Undoes normalization and returns reverted dataframe
        """
        out_df = df.copy()
        for n in self.cont_names:
            out_df[n] = (df[n] * (1e-7 + self.stds[n])) + self.means[n]
        return out_df

Ancestors

Methods

def apply_test(self, df)

Normalize self.cont_names with the same statistics as in apply_train.

Expand source code
def apply_test(self, df):
    "Normalize `self.cont_names` with the same statistics as in `apply_train`."
    for n in self.cont_names:
        df[n] = (df[n] - self.means[n]) / (1e-7 + self.stds[n])
def apply_train(self, df)

Compute the means and stds of self.cont_names columns to normalize them.

Expand source code
def apply_train(self, df):
    "Compute the means and stds of `self.cont_names` columns to normalize them."
    self.means, self.stds = {}, {}
    for n in self.cont_names:
        assert is_numeric_dtype(
            df[n]
        ), f"""Cannot normalize '{n}' column as it isn't numerical.
            Are you sure it doesn't belong in the categorical set of columns?"""
        self.means[n], self.stds[n] = df[n].mean(), df[n].std()
        df[n] = (df[n] - self.means[n]) / (1e-7 + self.stds[n])
def revert(self, df)

Undoes normalization and returns reverted dataframe

Expand source code
def revert(self, df):
    """
    Undoes normalization and returns reverted dataframe
    """
    out_df = df.copy()
    for n in self.cont_names:
        out_df[n] = (df[n] * (1e-7 + self.stds[n])) + self.means[n]
    return out_df
class TabularPreprocessor (predictor_columns, label_columns, date_columns=[], is_regression=False, procs=[], max_card=20)
Tabular preprocessing base class
Expand source code
class TabularPreprocessor(Preprocessor):
    """
    ```
    Tabular preprocessing base class
    ```
    """

    def __init__(
        self,
        predictor_columns,
        label_columns,
        date_columns=[],
        is_regression=False,
        procs=[],
        max_card=20,
    ):
        self.is_regression = is_regression
        self.c = None
        self.pc = predictor_columns
        self.lc = label_columns
        self.lc = [self.lc] if isinstance(self.lc, str) else self.lc
        self.dc = date_columns
        self.label_columns = None
        self.cat_names = []
        self.cont_names = []
        self.date_names = []
        self.label_transform = None
        self.procs = procs
        self.max_card = max_card

    @property
    def na_names(self):
        return [n for n in self.cat_names if n[-3:] == "_na"]

    def get_preprocessor(self):
        return (self.label_transform, self.procs)

    def get_classes(self):
        return self.label_columns if not self.is_regression else []

    def preprocess(self, df):
        return self.preprocess_test(df)

    def _validate_columns(self, df):
        missing_columns = []
        for col in df.columns.values:
            if col not in self.lc and col not in self.pc:
                missing_columns.append(col)
        if len(missing_columns) > 0:
            raise ValueError("df is missing columns: %s" % (missing_columns))
        return

    def denormalize(self, df):
        normalizer = None
        for proc in self.procs:
            if type(proc).__name__ == "Normalize":
                normalizer = proc
                break
        if normalizer is None:
            return df
        return normalizer.revert(df)

    # def codify(self, df):
    # df = df.copy()
    # for lab in self.lc:
    # df[lab] = df[lab].cat.codes
    # return df

    def preprocess_train(self, df, mode="train", verbose=1):
        """
        ```
        preprocess training set
        ```
        """
        df = df.copy()

        clean_df(df, pc=self.pc, lc=self.lc, check_labels=mode == "train")

        if not isinstance(df, pd.DataFrame):
            raise ValueError("df must be a pd.DataFrame")

        # validate columns
        self._validate_columns(df)

        # validate mode
        # if mode != 'train' and self.label_transform is None:
        # raise ValueError('self.label_transform is None but mode is %s: are you sure preprocess_train was invoked first?' % (mode))

        # verbose
        if verbose:
            print(
                "processing %s: %s rows x %s columns" % (mode, df.shape[0], df.shape[1])
            )

        # convert date fields
        for field in self.dc:
            df = df.copy()  # TODO: fix this
            df, date_names = add_datepart(df, field)
            self.date_names = date_names

        # preprocess labels and data
        if mode == "train":
            label_columns = self.lc[:]
            # label_columns.sort() # leave label columns sorted in same order as in DataFrame
            self.label_transform = U.YTransformDataFrame(
                label_columns, is_regression=self.is_regression
            )
            df = self.label_transform.apply_train(df)
            self.label_columns = (
                self.label_transform.get_classes()
                if not self.is_regression
                else self.label_transform.label_columns
            )
            self.cont_names, self.cat_names = cont_cat_split(
                df, label_columns=self.label_columns, max_card=self.max_card
            )
            self.procs = [
                proc(self.cat_names, self.cont_names) for proc in self.procs
            ]  # "objectivy"
        else:
            df = self.label_transform.apply_test(df)
        for proc in self.procs:
            proc(df, test=mode != "train")  # apply processors
        from .dataset import TabularDataset

        return TabularDataset(df, self.cat_names, self.cont_names, self.label_columns)

    def preprocess_valid(self, df, verbose=1):
        """
        ```
        preprocess validation set
        ```
        """
        return self.preprocess_train(df, mode="valid", verbose=verbose)

    def preprocess_test(self, df, verbose=1):
        """
        ```
        preprocess test set
        ```
        """
        return self.preprocess_train(df, mode="test", verbose=verbose)

Ancestors

Instance variables

var na_names
Expand source code
@property
def na_names(self):
    return [n for n in self.cat_names if n[-3:] == "_na"]

Methods

def denormalize(self, df)
Expand source code
def denormalize(self, df):
    normalizer = None
    for proc in self.procs:
        if type(proc).__name__ == "Normalize":
            normalizer = proc
            break
    if normalizer is None:
        return df
    return normalizer.revert(df)
def get_classes(self)
Expand source code
def get_classes(self):
    return self.label_columns if not self.is_regression else []
def get_preprocessor(self)
Expand source code
def get_preprocessor(self):
    return (self.label_transform, self.procs)
def preprocess(self, df)
Expand source code
def preprocess(self, df):
    return self.preprocess_test(df)
def preprocess_test(self, df, verbose=1)
preprocess test set
Expand source code
def preprocess_test(self, df, verbose=1):
    """
    ```
    preprocess test set
    ```
    """
    return self.preprocess_train(df, mode="test", verbose=verbose)
def preprocess_train(self, df, mode='train', verbose=1)
preprocess training set
Expand source code
def preprocess_train(self, df, mode="train", verbose=1):
    """
    ```
    preprocess training set
    ```
    """
    df = df.copy()

    clean_df(df, pc=self.pc, lc=self.lc, check_labels=mode == "train")

    if not isinstance(df, pd.DataFrame):
        raise ValueError("df must be a pd.DataFrame")

    # validate columns
    self._validate_columns(df)

    # validate mode
    # if mode != 'train' and self.label_transform is None:
    # raise ValueError('self.label_transform is None but mode is %s: are you sure preprocess_train was invoked first?' % (mode))

    # verbose
    if verbose:
        print(
            "processing %s: %s rows x %s columns" % (mode, df.shape[0], df.shape[1])
        )

    # convert date fields
    for field in self.dc:
        df = df.copy()  # TODO: fix this
        df, date_names = add_datepart(df, field)
        self.date_names = date_names

    # preprocess labels and data
    if mode == "train":
        label_columns = self.lc[:]
        # label_columns.sort() # leave label columns sorted in same order as in DataFrame
        self.label_transform = U.YTransformDataFrame(
            label_columns, is_regression=self.is_regression
        )
        df = self.label_transform.apply_train(df)
        self.label_columns = (
            self.label_transform.get_classes()
            if not self.is_regression
            else self.label_transform.label_columns
        )
        self.cont_names, self.cat_names = cont_cat_split(
            df, label_columns=self.label_columns, max_card=self.max_card
        )
        self.procs = [
            proc(self.cat_names, self.cont_names) for proc in self.procs
        ]  # "objectivy"
    else:
        df = self.label_transform.apply_test(df)
    for proc in self.procs:
        proc(df, test=mode != "train")  # apply processors
    from .dataset import TabularDataset

    return TabularDataset(df, self.cat_names, self.cont_names, self.label_columns)
def preprocess_valid(self, df, verbose=1)
preprocess validation set
Expand source code
def preprocess_valid(self, df, verbose=1):
    """
    ```
    preprocess validation set
    ```
    """
    return self.preprocess_train(df, mode="valid", verbose=verbose)
class TabularProc (cat_names, cont_names)

A processor for tabular dataframes.

Expand source code
class TabularProc:
    "A processor for tabular dataframes."

    def __init__(self, cat_names, cont_names):
        self.cat_names = cat_names
        self.cont_names = cont_names

    def __call__(self, df, test=False):
        "Apply the correct function to `df` depending on `test`."
        func = self.apply_test if test else self.apply_train
        func(df)

    def apply_train(self, df):
        "Function applied to `df` if it's the train set."
        raise NotImplementedError

    def apply_test(self, df):
        "Function applied to `df` if it's the test set."
        self.apply_train(df)

Subclasses

Methods

def apply_test(self, df)

Function applied to df if it's the test set.

Expand source code
def apply_test(self, df):
    "Function applied to `df` if it's the test set."
    self.apply_train(df)
def apply_train(self, df)

Function applied to df if it's the train set.

Expand source code
def apply_train(self, df):
    "Function applied to `df` if it's the train set."
    raise NotImplementedError