Module ktrain.text.ner.anago.callbacks

Custom callbacks.

Expand source code
"""
Custom callbacks.
"""

from ....imports import *
from .. import metrics


class F1score(keras.callbacks.Callback):
    def __init__(self, seq, preprocessor=None):
        super(F1score, self).__init__()
        self.seq = seq
        self.p = preprocessor

    def get_lengths(self, y_true):
        lengths = []
        for y in np.argmax(y_true, -1):
            try:
                i = list(y).index(0)
            except ValueError:
                i = len(y)
            lengths.append(i)

        return lengths

    def on_epoch_end(self, epoch, logs={}):
        label_true = []
        label_pred = []
        for i in range(len(self.seq)):
            x_true, y_true = self.seq[i]
            lengths = self.get_lengths(y_true)
            y_pred = self.model.predict_on_batch(x_true)

            y_true = self.p.inverse_transform(y_true, lengths)
            y_pred = self.p.inverse_transform(y_pred, lengths)

            label_true.extend(y_true)
            label_pred.extend(y_pred)

        score = metrics.f1_score(label_true, label_pred)
        print(" - f1: {:04.2f}".format(score * 100))
        print(metrics.classification_report(label_true, label_pred))
        logs["f1"] = score

Classes

class F1score (seq, preprocessor=None)

Abstract base class used to build new callbacks.

Callbacks can be passed to keras methods such as fit, evaluate, and predict in order to hook into the various stages of the model training and inference lifecycle.

To create a custom callback, subclass keras.callbacks.Callback and override the method associated with the stage of interest. See https://www.tensorflow.org/guide/keras/custom_callback for more information.

Example:

>>> training_finished = False
>>> class MyCallback(tf.keras.callbacks.Callback):
...   def on_train_end(self, logs=None):
...     global training_finished
...     training_finished = True
>>> model = tf.keras.Sequential([
...     tf.keras.layers.Dense(1, input_shape=(1,))])
>>> model.compile(loss='mean_squared_error')
>>> model.fit(tf.constant([[1.0]]), tf.constant([[1.0]]),
...           callbacks=[MyCallback()])
>>> assert training_finished == True

If you want to use Callback objects in a custom training loop:

  1. You should pack all your callbacks into a single callbacks.CallbackList so they can all be called together.
  2. You will need to manually call all the on_* methods at the appropriate locations in your loop. Like this:

Example:

   callbacks =  tf.keras.callbacks.CallbackList([...])
   callbacks.append(...)
   callbacks.on_train_begin(...)
   for epoch in range(EPOCHS):
     callbacks.on_epoch_begin(epoch)
     for i, data in dataset.enumerate():
       callbacks.on_train_batch_begin(i)
       batch_logs = model.train_step(data)
       callbacks.on_train_batch_end(i, batch_logs)
     epoch_logs = ...
     callbacks.on_epoch_end(epoch, epoch_logs)
   final_logs=...
   callbacks.on_train_end(final_logs)

Attributes

params
Dict. Training parameters (eg. verbosity, batch size, number of epochs…).
model
Instance of keras.models.Model. Reference of the model being trained.

The logs dictionary that callback methods take as argument will contain keys for quantities relevant to the current batch or epoch (see method-specific docstrings).

Expand source code
class F1score(keras.callbacks.Callback):
    def __init__(self, seq, preprocessor=None):
        super(F1score, self).__init__()
        self.seq = seq
        self.p = preprocessor

    def get_lengths(self, y_true):
        lengths = []
        for y in np.argmax(y_true, -1):
            try:
                i = list(y).index(0)
            except ValueError:
                i = len(y)
            lengths.append(i)

        return lengths

    def on_epoch_end(self, epoch, logs={}):
        label_true = []
        label_pred = []
        for i in range(len(self.seq)):
            x_true, y_true = self.seq[i]
            lengths = self.get_lengths(y_true)
            y_pred = self.model.predict_on_batch(x_true)

            y_true = self.p.inverse_transform(y_true, lengths)
            y_pred = self.p.inverse_transform(y_pred, lengths)

            label_true.extend(y_true)
            label_pred.extend(y_pred)

        score = metrics.f1_score(label_true, label_pred)
        print(" - f1: {:04.2f}".format(score * 100))
        print(metrics.classification_report(label_true, label_pred))
        logs["f1"] = score

Ancestors

  • keras.callbacks.Callback

Methods

def get_lengths(self, y_true)
Expand source code
def get_lengths(self, y_true):
    lengths = []
    for y in np.argmax(y_true, -1):
        try:
            i = list(y).index(0)
        except ValueError:
            i = len(y)
        lengths.append(i)

    return lengths
def on_epoch_end(self, epoch, logs={})

Called at the end of an epoch.

Subclasses should override for any actions to run. This function should only be called during TRAIN mode.

Args

epoch
Integer, index of epoch.
logs
Dict, metric results for this training epoch, and for the validation epoch if validation is performed. Validation result keys are prefixed with val_. For training epoch, the values of the Model's metrics are returned. Example: {'loss': 0.2, 'accuracy': 0.7}.
Expand source code
def on_epoch_end(self, epoch, logs={}):
    label_true = []
    label_pred = []
    for i in range(len(self.seq)):
        x_true, y_true = self.seq[i]
        lengths = self.get_lengths(y_true)
        y_pred = self.model.predict_on_batch(x_true)

        y_true = self.p.inverse_transform(y_true, lengths)
        y_pred = self.p.inverse_transform(y_pred, lengths)

        label_true.extend(y_true)
        label_pred.extend(y_pred)

    score = metrics.f1_score(label_true, label_pred)
    print(" - f1: {:04.2f}".format(score * 100))
    print(metrics.classification_report(label_true, label_pred))
    logs["f1"] = score