Module ktrain.text.predictor
Expand source code
from .. import utils as U
from ..imports import *
from ..predictor import Predictor
from .preprocessor import TextPreprocessor, TransformersPreprocessor, detect_text_format
class TextPredictor(Predictor):
"""
```
predicts text classes
```
"""
def __init__(self, model, preproc, batch_size=U.DEFAULT_BS):
if not isinstance(model, keras.Model):
raise ValueError("model must be of instance keras.Model")
if not isinstance(preproc, TextPreprocessor):
# if type(preproc).__name__ != 'TextPreprocessor':
raise ValueError("preproc must be a TextPreprocessor object")
self.model = model
self.preproc = preproc
self.c = self.preproc.get_classes()
self.batch_size = batch_size
def get_classes(self):
return self.c
def predict(self, texts, return_proba=False, use_tf_dataset=False, verbose=0):
"""
```
Makes predictions for a list of strings where each string is a document
or text snippet.
If return_proba is True, returns probabilities of each class.
Args:
texts(str|list): For text classification, texts should be either a str or
a list of str.
For sentence pair classification, texts should be either
a tuple of form (str, str) or list of tuples.
A single tuple of the form (str, str) is automatically treated as sentence pair classification, so
please refrain from using tuples for text classification tasks.
return_proba(bool): If True, return probabilities instead of predicted class labels
use_tf_dataset(bool): If True, wraps dataset in a tf.Dataset when passing input to model.
verbose(int): verbosity: 0 (silent), 1 (progress bar), 2 (single line)
```
"""
is_array, is_pair = detect_text_format(texts)
if not is_array:
texts = [texts]
classification, multilabel = U.is_classifier(self.model)
# get predictions
if U.is_huggingface(model=self.model):
tseq = self.preproc.preprocess_test(texts, verbose=0)
if use_tf_dataset:
tseq.batch_size = self.batch_size
tfd = tseq.to_tfdataset(train=False)
preds = self.model.predict(tfd, verbose=verbose)
else:
data = tseq.to_array()
preds = self.model.predict(
data, batch_size=self.batch_size, verbose=verbose
)
if hasattr(
preds, "logits"
): # dep_fix: breaking change - also needed for LongFormer
# if type(preds).__name__ == 'TFSequenceClassifierOutput': # dep_fix: undocumented breaking change in transformers==4.0.0
# REFERENCE: https://discuss.huggingface.co/t/new-model-output-types/195
preds = preds.logits
# dep_fix: transformers in TF 2.2.0 returns a tuple insead of NumPy array for some reason
if isinstance(preds, tuple) and len(preds) == 1:
preds = preds[0]
else:
texts = self.preproc.preprocess(texts)
preds = self.model.predict(
texts, batch_size=self.batch_size, verbose=verbose
)
# process predictions
if U.is_huggingface(model=self.model):
# convert logits to probabilities for Hugging Face models
if multilabel and self.c:
preds = keras.activations.sigmoid(tf.convert_to_tensor(preds)).numpy()
elif self.c:
preds = keras.activations.softmax(tf.convert_to_tensor(preds)).numpy()
else:
preds = np.squeeze(preds)
if len(preds.shape) == 0:
preds = np.expand_dims(preds, -1)
result = (
preds
if return_proba or multilabel or not self.c
else [self.c[np.argmax(pred)] for pred in preds]
)
if multilabel and not return_proba:
result = [list(zip(self.c, r)) for r in result]
if not is_array:
return result[0]
else:
return result
def predict_proba(self, texts, verbose=0):
"""
```
Makes predictions for a list of strings where each string is a document
or text snippet.
Returns probabilities of each class.
```
"""
return self.predict(texts, return_proba=True, verbose=verbose)
def explain(self, doc, truncate_len=512, all_targets=False, n_samples=2500):
"""
Highlights text to explain prediction
Args:
doc (str): text of documnet
truncate_len(int): truncate document to this many words
all_targets(bool): If True, show visualization for
each target.
n_samples(int): number of samples to generate and train on.
Larger values give better results, but will take more time.
Lower this value if explain is taking too long.
"""
is_array, is_pair = detect_text_format(doc)
if is_pair:
warnings.warn(
"currently_unsupported: explain does not currently support sentence pair classification"
)
return
if not self.c:
warnings.warn(
"currently_unsupported: explain does not support text regression"
)
return
try:
import eli5
from eli5.lime import TextExplainer
except:
msg = (
"ktrain requires a forked version of eli5 to support tf.keras. "
+ "Install with: pip install https://github.com/amaiya/eli5-tf/archive/refs/heads/master.zip"
)
warnings.warn(msg)
return
if not isinstance(doc, str):
raise TypeError("text must of type str")
prediction = [self.predict(doc)] if not all_targets else None
if self.preproc.is_nospace_lang():
doc = self.preproc.process_chinese([doc])
doc = doc[0]
doc = " ".join(doc.split()[:truncate_len])
te = TextExplainer(random_state=42, n_samples=n_samples)
_ = te.fit(doc, self.predict_proba)
return te.show_prediction(
target_names=self.preproc.get_classes(), targets=prediction
)
def _save_model(self, fpath):
if isinstance(self.preproc, TransformersPreprocessor):
self.model.save_pretrained(fpath)
# As of 0.26.3, make sure we save tokenizer in predictor folder
tok = self.preproc.get_tokenizer()
tok.save_pretrained(fpath)
else:
super()._save_model(fpath)
return
Classes
class TextPredictor (model, preproc, batch_size=32)
-
predicts text classes
Expand source code
class TextPredictor(Predictor): """ ``` predicts text classes ``` """ def __init__(self, model, preproc, batch_size=U.DEFAULT_BS): if not isinstance(model, keras.Model): raise ValueError("model must be of instance keras.Model") if not isinstance(preproc, TextPreprocessor): # if type(preproc).__name__ != 'TextPreprocessor': raise ValueError("preproc must be a TextPreprocessor object") self.model = model self.preproc = preproc self.c = self.preproc.get_classes() self.batch_size = batch_size def get_classes(self): return self.c def predict(self, texts, return_proba=False, use_tf_dataset=False, verbose=0): """ ``` Makes predictions for a list of strings where each string is a document or text snippet. If return_proba is True, returns probabilities of each class. Args: texts(str|list): For text classification, texts should be either a str or a list of str. For sentence pair classification, texts should be either a tuple of form (str, str) or list of tuples. A single tuple of the form (str, str) is automatically treated as sentence pair classification, so please refrain from using tuples for text classification tasks. return_proba(bool): If True, return probabilities instead of predicted class labels use_tf_dataset(bool): If True, wraps dataset in a tf.Dataset when passing input to model. verbose(int): verbosity: 0 (silent), 1 (progress bar), 2 (single line) ``` """ is_array, is_pair = detect_text_format(texts) if not is_array: texts = [texts] classification, multilabel = U.is_classifier(self.model) # get predictions if U.is_huggingface(model=self.model): tseq = self.preproc.preprocess_test(texts, verbose=0) if use_tf_dataset: tseq.batch_size = self.batch_size tfd = tseq.to_tfdataset(train=False) preds = self.model.predict(tfd, verbose=verbose) else: data = tseq.to_array() preds = self.model.predict( data, batch_size=self.batch_size, verbose=verbose ) if hasattr( preds, "logits" ): # dep_fix: breaking change - also needed for LongFormer # if type(preds).__name__ == 'TFSequenceClassifierOutput': # dep_fix: undocumented breaking change in transformers==4.0.0 # REFERENCE: https://discuss.huggingface.co/t/new-model-output-types/195 preds = preds.logits # dep_fix: transformers in TF 2.2.0 returns a tuple insead of NumPy array for some reason if isinstance(preds, tuple) and len(preds) == 1: preds = preds[0] else: texts = self.preproc.preprocess(texts) preds = self.model.predict( texts, batch_size=self.batch_size, verbose=verbose ) # process predictions if U.is_huggingface(model=self.model): # convert logits to probabilities for Hugging Face models if multilabel and self.c: preds = keras.activations.sigmoid(tf.convert_to_tensor(preds)).numpy() elif self.c: preds = keras.activations.softmax(tf.convert_to_tensor(preds)).numpy() else: preds = np.squeeze(preds) if len(preds.shape) == 0: preds = np.expand_dims(preds, -1) result = ( preds if return_proba or multilabel or not self.c else [self.c[np.argmax(pred)] for pred in preds] ) if multilabel and not return_proba: result = [list(zip(self.c, r)) for r in result] if not is_array: return result[0] else: return result def predict_proba(self, texts, verbose=0): """ ``` Makes predictions for a list of strings where each string is a document or text snippet. Returns probabilities of each class. ``` """ return self.predict(texts, return_proba=True, verbose=verbose) def explain(self, doc, truncate_len=512, all_targets=False, n_samples=2500): """ Highlights text to explain prediction Args: doc (str): text of documnet truncate_len(int): truncate document to this many words all_targets(bool): If True, show visualization for each target. n_samples(int): number of samples to generate and train on. Larger values give better results, but will take more time. Lower this value if explain is taking too long. """ is_array, is_pair = detect_text_format(doc) if is_pair: warnings.warn( "currently_unsupported: explain does not currently support sentence pair classification" ) return if not self.c: warnings.warn( "currently_unsupported: explain does not support text regression" ) return try: import eli5 from eli5.lime import TextExplainer except: msg = ( "ktrain requires a forked version of eli5 to support tf.keras. " + "Install with: pip install https://github.com/amaiya/eli5-tf/archive/refs/heads/master.zip" ) warnings.warn(msg) return if not isinstance(doc, str): raise TypeError("text must of type str") prediction = [self.predict(doc)] if not all_targets else None if self.preproc.is_nospace_lang(): doc = self.preproc.process_chinese([doc]) doc = doc[0] doc = " ".join(doc.split()[:truncate_len]) te = TextExplainer(random_state=42, n_samples=n_samples) _ = te.fit(doc, self.predict_proba) return te.show_prediction( target_names=self.preproc.get_classes(), targets=prediction ) def _save_model(self, fpath): if isinstance(self.preproc, TransformersPreprocessor): self.model.save_pretrained(fpath) # As of 0.26.3, make sure we save tokenizer in predictor folder tok = self.preproc.get_tokenizer() tok.save_pretrained(fpath) else: super()._save_model(fpath) return
Ancestors
- Predictor
- abc.ABC
Methods
def explain(self, doc, truncate_len=512, all_targets=False, n_samples=2500)
-
Highlights text to explain prediction
Args
doc
:str
- text of documnet
truncate_len(int): truncate document to this many words all_targets(bool): If True, show visualization for each target. n_samples(int): number of samples to generate and train on. Larger values give better results, but will take more time. Lower this value if explain is taking too long.
Expand source code
def explain(self, doc, truncate_len=512, all_targets=False, n_samples=2500): """ Highlights text to explain prediction Args: doc (str): text of documnet truncate_len(int): truncate document to this many words all_targets(bool): If True, show visualization for each target. n_samples(int): number of samples to generate and train on. Larger values give better results, but will take more time. Lower this value if explain is taking too long. """ is_array, is_pair = detect_text_format(doc) if is_pair: warnings.warn( "currently_unsupported: explain does not currently support sentence pair classification" ) return if not self.c: warnings.warn( "currently_unsupported: explain does not support text regression" ) return try: import eli5 from eli5.lime import TextExplainer except: msg = ( "ktrain requires a forked version of eli5 to support tf.keras. " + "Install with: pip install https://github.com/amaiya/eli5-tf/archive/refs/heads/master.zip" ) warnings.warn(msg) return if not isinstance(doc, str): raise TypeError("text must of type str") prediction = [self.predict(doc)] if not all_targets else None if self.preproc.is_nospace_lang(): doc = self.preproc.process_chinese([doc]) doc = doc[0] doc = " ".join(doc.split()[:truncate_len]) te = TextExplainer(random_state=42, n_samples=n_samples) _ = te.fit(doc, self.predict_proba) return te.show_prediction( target_names=self.preproc.get_classes(), targets=prediction )
def get_classes(self)
-
Expand source code
def get_classes(self): return self.c
def predict(self, texts, return_proba=False, use_tf_dataset=False, verbose=0)
-
Makes predictions for a list of strings where each string is a document or text snippet. If return_proba is True, returns probabilities of each class. Args: texts(str|list): For text classification, texts should be either a str or a list of str. For sentence pair classification, texts should be either a tuple of form (str, str) or list of tuples. A single tuple of the form (str, str) is automatically treated as sentence pair classification, so please refrain from using tuples for text classification tasks. return_proba(bool): If True, return probabilities instead of predicted class labels use_tf_dataset(bool): If True, wraps dataset in a tf.Dataset when passing input to model. verbose(int): verbosity: 0 (silent), 1 (progress bar), 2 (single line)
Expand source code
def predict(self, texts, return_proba=False, use_tf_dataset=False, verbose=0): """ ``` Makes predictions for a list of strings where each string is a document or text snippet. If return_proba is True, returns probabilities of each class. Args: texts(str|list): For text classification, texts should be either a str or a list of str. For sentence pair classification, texts should be either a tuple of form (str, str) or list of tuples. A single tuple of the form (str, str) is automatically treated as sentence pair classification, so please refrain from using tuples for text classification tasks. return_proba(bool): If True, return probabilities instead of predicted class labels use_tf_dataset(bool): If True, wraps dataset in a tf.Dataset when passing input to model. verbose(int): verbosity: 0 (silent), 1 (progress bar), 2 (single line) ``` """ is_array, is_pair = detect_text_format(texts) if not is_array: texts = [texts] classification, multilabel = U.is_classifier(self.model) # get predictions if U.is_huggingface(model=self.model): tseq = self.preproc.preprocess_test(texts, verbose=0) if use_tf_dataset: tseq.batch_size = self.batch_size tfd = tseq.to_tfdataset(train=False) preds = self.model.predict(tfd, verbose=verbose) else: data = tseq.to_array() preds = self.model.predict( data, batch_size=self.batch_size, verbose=verbose ) if hasattr( preds, "logits" ): # dep_fix: breaking change - also needed for LongFormer # if type(preds).__name__ == 'TFSequenceClassifierOutput': # dep_fix: undocumented breaking change in transformers==4.0.0 # REFERENCE: https://discuss.huggingface.co/t/new-model-output-types/195 preds = preds.logits # dep_fix: transformers in TF 2.2.0 returns a tuple insead of NumPy array for some reason if isinstance(preds, tuple) and len(preds) == 1: preds = preds[0] else: texts = self.preproc.preprocess(texts) preds = self.model.predict( texts, batch_size=self.batch_size, verbose=verbose ) # process predictions if U.is_huggingface(model=self.model): # convert logits to probabilities for Hugging Face models if multilabel and self.c: preds = keras.activations.sigmoid(tf.convert_to_tensor(preds)).numpy() elif self.c: preds = keras.activations.softmax(tf.convert_to_tensor(preds)).numpy() else: preds = np.squeeze(preds) if len(preds.shape) == 0: preds = np.expand_dims(preds, -1) result = ( preds if return_proba or multilabel or not self.c else [self.c[np.argmax(pred)] for pred in preds] ) if multilabel and not return_proba: result = [list(zip(self.c, r)) for r in result] if not is_array: return result[0] else: return result
def predict_proba(self, texts, verbose=0)
-
Makes predictions for a list of strings where each string is a document or text snippet. Returns probabilities of each class.
Expand source code
def predict_proba(self, texts, verbose=0): """ ``` Makes predictions for a list of strings where each string is a document or text snippet. Returns probabilities of each class. ``` """ return self.predict(texts, return_proba=True, verbose=verbose)
Inherited members