Module ktrain.text.textextractor
Expand source code
from .. import utils as U
from ..imports import *
from . import textutils as TU
try:
import textract
TEXTRACT_INSTALLED = True
except ImportError:
TEXTRACT_INSTALLED = False
JAVA_INSTALLED = U.checkjava()
class TextExtractor:
"""
```
Text Extractor: a wrapper to textract package
```
"""
def __init__(self, use_tika=True):
if use_tika:
try:
from tika import parser
except ImportError as e:
raise ValueError(
"If use_tika=True, then TextExtractor requires tika: pip install tika"
)
except PermissionError as e:
raise PermissionError(
f"There may already be a /tmp/tika.log file from another user - please delete it or change permissions: {e}"
)
if not use_tika and not TEXTRACT_INSTALLED:
raise ValueError(
"If use_tika=False, then TextExtractor requires textract: pip install textract"
)
self.use_tika = use_tika
def extract(
self, filename=None, text=None, return_format="document", lang=None, verbose=1
):
"""
```
Extracts text from document given file path to document.
filename(str): path to file, Mutually-exclusive with text.
text(str): string to tokenize. Mutually-exclusive with filename.
The extract method can also simply accept a string and return lists of sentences or paragraphs.
return_format(str): One of {'document', 'paragraphs', 'sentences'}
'document': returns text of document
'paragraphs': returns a list of paragraphs from document
'sentences': returns a list of sentences from document
lang(str): language code. If None, lang will be detected from extracted text
verbose(bool): verbosity
```
"""
if filename is None and text is None:
raise ValueError(
"Either the filename parameter or the text parameter must be supplied"
)
if filename is not None and text is not None:
raise ValueError("The filename and text parameters are mutually-exclusive.")
if return_format not in ["document", "paragraphs", "sentences"]:
raise ValueError(
'return_format must be one of {"document", "paragraphs", "sentences"}'
)
if filename is not None:
mtype = TU.get_mimetype(filename)
try:
if mtype and mtype.split("/")[0] == "text":
with open(filename, "r") as f:
text = f.read()
text = str.encode(text)
else:
text = self._extract(filename)
except Exception as e:
if verbose:
print("ERROR on %s:\n%s" % (filename, e))
try:
text = text.decode(errors="ignore")
except:
pass
if return_format == "sentences":
return TU.sent_tokenize(text, lang=lang)
elif return_format == "paragraphs":
return TU.paragraph_tokenize(text, join_sentences=True, lang=lang)
else:
return text
def _extract(self, filename):
if self.use_tika:
from tika import parser
if JAVA_INSTALLED:
parsed = parser.from_file(filename)
text = parsed["content"]
else:
raise Exception("Please install Java for TIKA text extraction")
else:
text = textract.process(filename)
return text.strip()
Classes
class TextExtractor (use_tika=True)
-
Text Extractor: a wrapper to textract package
Expand source code
class TextExtractor: """ ``` Text Extractor: a wrapper to textract package ``` """ def __init__(self, use_tika=True): if use_tika: try: from tika import parser except ImportError as e: raise ValueError( "If use_tika=True, then TextExtractor requires tika: pip install tika" ) except PermissionError as e: raise PermissionError( f"There may already be a /tmp/tika.log file from another user - please delete it or change permissions: {e}" ) if not use_tika and not TEXTRACT_INSTALLED: raise ValueError( "If use_tika=False, then TextExtractor requires textract: pip install textract" ) self.use_tika = use_tika def extract( self, filename=None, text=None, return_format="document", lang=None, verbose=1 ): """ ``` Extracts text from document given file path to document. filename(str): path to file, Mutually-exclusive with text. text(str): string to tokenize. Mutually-exclusive with filename. The extract method can also simply accept a string and return lists of sentences or paragraphs. return_format(str): One of {'document', 'paragraphs', 'sentences'} 'document': returns text of document 'paragraphs': returns a list of paragraphs from document 'sentences': returns a list of sentences from document lang(str): language code. If None, lang will be detected from extracted text verbose(bool): verbosity ``` """ if filename is None and text is None: raise ValueError( "Either the filename parameter or the text parameter must be supplied" ) if filename is not None and text is not None: raise ValueError("The filename and text parameters are mutually-exclusive.") if return_format not in ["document", "paragraphs", "sentences"]: raise ValueError( 'return_format must be one of {"document", "paragraphs", "sentences"}' ) if filename is not None: mtype = TU.get_mimetype(filename) try: if mtype and mtype.split("/")[0] == "text": with open(filename, "r") as f: text = f.read() text = str.encode(text) else: text = self._extract(filename) except Exception as e: if verbose: print("ERROR on %s:\n%s" % (filename, e)) try: text = text.decode(errors="ignore") except: pass if return_format == "sentences": return TU.sent_tokenize(text, lang=lang) elif return_format == "paragraphs": return TU.paragraph_tokenize(text, join_sentences=True, lang=lang) else: return text def _extract(self, filename): if self.use_tika: from tika import parser if JAVA_INSTALLED: parsed = parser.from_file(filename) text = parsed["content"] else: raise Exception("Please install Java for TIKA text extraction") else: text = textract.process(filename) return text.strip()
Methods
def extract(self, filename=None, text=None, return_format='document', lang=None, verbose=1)
-
Extracts text from document given file path to document. filename(str): path to file, Mutually-exclusive with text. text(str): string to tokenize. Mutually-exclusive with filename. The extract method can also simply accept a string and return lists of sentences or paragraphs. return_format(str): One of {'document', 'paragraphs', 'sentences'} 'document': returns text of document 'paragraphs': returns a list of paragraphs from document 'sentences': returns a list of sentences from document lang(str): language code. If None, lang will be detected from extracted text verbose(bool): verbosity
Expand source code
def extract( self, filename=None, text=None, return_format="document", lang=None, verbose=1 ): """ ``` Extracts text from document given file path to document. filename(str): path to file, Mutually-exclusive with text. text(str): string to tokenize. Mutually-exclusive with filename. The extract method can also simply accept a string and return lists of sentences or paragraphs. return_format(str): One of {'document', 'paragraphs', 'sentences'} 'document': returns text of document 'paragraphs': returns a list of paragraphs from document 'sentences': returns a list of sentences from document lang(str): language code. If None, lang will be detected from extracted text verbose(bool): verbosity ``` """ if filename is None and text is None: raise ValueError( "Either the filename parameter or the text parameter must be supplied" ) if filename is not None and text is not None: raise ValueError("The filename and text parameters are mutually-exclusive.") if return_format not in ["document", "paragraphs", "sentences"]: raise ValueError( 'return_format must be one of {"document", "paragraphs", "sentences"}' ) if filename is not None: mtype = TU.get_mimetype(filename) try: if mtype and mtype.split("/")[0] == "text": with open(filename, "r") as f: text = f.read() text = str.encode(text) else: text = self._extract(filename) except Exception as e: if verbose: print("ERROR on %s:\n%s" % (filename, e)) try: text = text.decode(errors="ignore") except: pass if return_format == "sentences": return TU.sent_tokenize(text, lang=lang) elif return_format == "paragraphs": return TU.paragraph_tokenize(text, join_sentences=True, lang=lang) else: return text