Module ktrain.vision.data

Expand source code
from .. import utils as U
from ..imports import *
from .preprocessor import ImagePreprocessor

try:
    from tensorflow.keras.utils import img_to_array
except ImportError:
    try:
        img_to_array = keras.preprocessing.image.img_to_array
    except Exception as e:
        img_to_array = None


def show_image(img_path):
    """
    ```
    Given file path to image, show it in Jupyter notebook
    ```
    """
    if not os.path.isfile(img_path):
        raise ValueError("%s is not valid file" % (img_path))
    img = plt.imread(img_path)
    out = plt.imshow(img)
    return out


def show_random_images(img_folder, n=4, rows=1):
    """
    ```
    display random images from a img_folder
    ```
    """
    fnames = []
    for ext in ("*.gif", "*.png", "*.jpg"):
        fnames.extend(glob.glob(os.path.join(img_folder, ext)))
    ims = []
    for i in range(n):
        img_path = random.choice(fnames)
        img = keras.preprocessing.image.load_img(img_path)
        x = img_to_array(img)
        x = x / 255.0
        ims.append(x)
    U.plots(ims, rows=rows)
    return


def preview_data_aug(img_path, data_aug, rows=1, n=4):
    """
    ```
    Preview data augmentation (ImageDatagenerator)
    on a supplied image.
    ```
    """
    if type(img_path) != type("") or not os.path.isfile(img_path):
        raise ValueError("img_path must be valid file path to image")
    idg = copy.copy(data_aug)
    idg.featurewise_center = False
    idg.featurewise_std_normalization = False
    idg.samplewise_center = False
    idg.samplewise_std_normalization = False
    idg.rescale = None
    idg.zca_whitening = False
    idg.preprocessing_function = None

    img = keras.preprocessing.image.load_img(img_path)
    x = img_to_array(img)
    x = x / 255.0
    x = x.reshape((1,) + x.shape)
    i = 0
    ims = []
    for batch in idg.flow(x, batch_size=1):
        ims.append(np.squeeze(batch))
        i += 1
        if i >= n:
            break
    U.plots(ims, rows=rows)
    return


def preview_data_aug_OLD(img_path, data_aug, n=4):
    """
    ```
    Preview data augmentation (ImageDatagenerator)
    on a supplied image.
    ```
    """
    if type(img_path) != type("") or not os.path.isfile(img_path):
        raise ValueError("img_path must be valid file path to image")
    idg = copy.copy(data_aug)
    idg.featurewise_center = False
    idg.featurewise_std_normalization = False
    idg.samplewise_center = False
    idg.samplewise_std_normalization = False
    idg.rescale = None
    idg.zca_whitening = False
    idg.preprocessing_function = None

    img = keras.preprocessing.image.load_img(img_path)
    x = img_to_array(img)
    x = x / 255.0
    x = x.reshape((1,) + x.shape)
    i = 0
    for batch in idg.flow(x, batch_size=1):
        plt.figure()
        plt.imshow(np.squeeze(batch))
        i += 1
        if i >= n:
            break
    return


def get_data_aug(
    rotation_range=40,
    zoom_range=0.2,
    width_shift_range=0.2,
    height_shift_range=0.2,
    horizontal_flip=False,
    vertical_flip=False,
    featurewise_center=True,
    featurewise_std_normalization=True,
    samplewise_center=False,
    samplewise_std_normalization=False,
    rescale=None,
    **kwargs
):
    """
    ```
    This function is simply a wrapper around ImageDataGenerator
    with some reasonable defaults for data augmentation.
    Returns the default image_data_generator to support
    data augmentation and data normalization.
    Parameters can be adjusted by caller.
    Note that the ktrain.vision.model.image_classifier
    function may adjust these as needed.
    ```
    """

    data_aug = keras.preprocessing.image.ImageDataGenerator(
        rotation_range=rotation_range,
        zoom_range=zoom_range,
        width_shift_range=width_shift_range,
        height_shift_range=height_shift_range,
        horizontal_flip=horizontal_flip,
        vertical_flip=vertical_flip,
        featurewise_center=featurewise_center,
        featurewise_std_normalization=featurewise_std_normalization,
        samplewise_center=samplewise_center,
        samplewise_std_normalization=samplewise_std_normalization,
        rescale=rescale,
        **kwargs
    )
    return data_aug


def get_test_datagen(data_aug=None):
    if data_aug:
        featurewise_center = data_aug.featurewise_center
        featurewise_std_normalization = data_aug.featurewise_std_normalization
        samplewise_center = data_aug.samplewise_center
        samplewise_std_normalization = data_aug.samplewise_std_normalization
        rescale = data_aug.rescale
        zca_whitening = data_aug.zca_whitening
        test_datagen = keras.preprocessing.image.ImageDataGenerator(
            rescale=rescale,
            featurewise_center=featurewise_center,
            samplewise_center=samplewise_center,
            featurewise_std_normalization=featurewise_std_normalization,
            samplewise_std_normalization=samplewise_std_normalization,
            zca_whitening=zca_whitening,
        )
    else:
        test_datagen = keras.preprocessing.image.ImageDataGenerator()
    return test_datagen


def process_datagen(
    data_aug,
    train_array=None,
    train_directory=None,
    target_size=None,
    color_mode="rgb",
    flat_dir=False,
):
    # set generators for train and test
    if data_aug is not None:
        train_datagen = data_aug
        test_datagen = get_test_datagen(data_aug=data_aug)
    else:
        train_datagen = get_test_datagen()
        test_datagen = get_test_datagen()

    # compute statistics for normalization
    fit_datagens(
        train_datagen,
        test_datagen,
        train_array=train_array,
        train_directory=train_directory,
        target_size=target_size,
        color_mode=color_mode,
        flat_dir=flat_dir,
    )

    return (train_datagen, test_datagen)


def fit_datagens(
    train_datagen,
    test_datagen,
    train_array=None,
    train_directory=None,
    target_size=None,
    color_mode="rgb",
    flat_dir=False,
):
    """
    ```
    computes stats of images for normalization
    ```
    """
    if not datagen_needs_fit(train_datagen):
        return
    if bool(train_array is not None) == bool(train_directory):
        raise ValueError("only one of train_array or train_directory is required.")
    if train_array is not None:
        train_datagen.fit(train_array)
        test_datagen.fit(train_array)
    else:
        if target_size is None:
            raise ValueError("target_size is required when train_directory is supplied")
        fit_samples = sample_image_folder(
            train_directory, target_size, color_mode=color_mode, flat_dir=flat_dir
        )
        train_datagen.fit(fit_samples)
        test_datagen.fit(fit_samples)
    return


def datagen_needs_fit(datagen):
    if (
        datagen.featurewise_center
        or datagen.featurewise_std_normalization
        or datagen.zca_whitening
    ):
        return True
    else:
        return False


def sample_image_folder(train_directory, target_size, color_mode="rgb", flat_dir=False):
    # adjust train_directory
    classes = None
    if flat_dir and train_directory is not None:
        folder = train_directory
        if folder[-1] != os.sep:
            folder += os.sep
        parent = os.path.dirname(os.path.dirname(folder))
        folder_name = os.path.basename(os.path.dirname(folder))
        train_directory = parent
        classes = [folder_name]

    # sample images
    batch_size = 100
    img_gen = keras.preprocessing.image.ImageDataGenerator()
    batches = img_gen.flow_from_directory(
        directory=train_directory,
        classes=classes,
        target_size=target_size,
        batch_size=batch_size,
        color_mode=color_mode,
        shuffle=True,
    )
    the_shape = batches[0][0].shape
    sample_size = the_shape[0]
    if K.image_data_format() == "channels_first":
        num_channels = the_shape[1]
    else:
        num_channels = the_shape[-1]
    imgs, labels = next(batches)
    return imgs


def detect_color_mode(train_directory, target_size=(32, 32)):
    try:
        fname = glob.glob(os.path.join(train_directory, "**/*"))[0]
        img = Image.open(fname).resize(target_size)
        num_channels = len(img.getbands())
        if num_channels == 3:
            return "rgb"
        elif num_channels == 1:
            return "grayscale"
        else:
            return "rgby"
    except:
        warnings.warn("could not detect color_mode from %s" % (train_directory))
        return


def preprocess_csv(
    csv_in,
    csv_out,
    x_col="filename",
    y_col=None,
    sep=",",
    label_sep=" ",
    suffix="",
    split_by=None,
):
    """
    ```
    Takes a CSV where the one column contains a file name and a column
    containing a string representations of the class(es) like here:
    image_name,tags
    01, sunny|hot
    02, cloudy|cold
    03, cloudy|hot

    .... and one-hot encodes the classes to produce a CSV as follows:
    image_name, cloudy, cold, hot, sunny
    01.jpg,0,0,1,1
    02.jpg,1,1,0,0
    03.jpg,1,0,1,0
    Args:
        csv_in (str):  filepath to input CSV file
        csv_out (str): filepath to output CSV file
        x_col (str):  name of column containing file names
        y_col (str): name of column containing the classes
        sep (str): field delimiter of entire file (e.g., comma fore CSV)
        label_sep (str): delimiter for column containing classes
        suffix (str): adds suffix to x_col values
        split_by(str): name of column. A separate CSV will be
                       created for each value in column. Useful
                       for splitting a CSV based on whether a column
                       contains 'train' or 'valid'.
    Return:
        list :  the list of clases (and csv_out will be new CSV file)
    ```
    """
    if not y_col and not suffix:
        raise ValueError("one or both of y_col and suffix should be supplied")
    df = pd.read_csv(csv_in, sep=sep)
    f_csv_out = open(csv_out, "w")
    writer = csv.writer(f_csv_out, delimiter=sep)
    if y_col:
        df[y_col] = df[y_col].apply(str)

    # write header
    if y_col:
        classes = set()
        for row in df.iterrows():
            data = row[1]
            tags = data[y_col].split(label_sep)
            classes.update(tags)
        classes = list(classes)
        classes.sort()
        writer.writerow([x_col] + classes)
    else:
        classes = df.columns[:-1]
        write.writerow(df.columns)

    # write rows
    for row in df.iterrows():
        data = row[1]
        data[x_col] = data[x_col] + suffix
        if y_col:
            out = list(data[[x_col]].values)
            tags = set(data[y_col].strip().split(label_sep))
            for c in classes:
                if c in tags:
                    out.append(1)
                else:
                    out.append(0)
        else:
            out = data
        writer.writerow(out)
    f_csv_out.close()
    return classes


def images_from_folder(
    datadir,
    target_size=(224, 224),
    classes=None,
    color_mode="rgb",
    train_test_names=["train", "test"],
    data_aug=None,
    verbose=1,
):
    """
    ```
    Returns image generator (Iterator instance).
    Assumes output will be 2D one-hot-encoded labels for categorization.
    Note: This function preprocesses the input in preparation
          for a ResNet50 model.

    Args:
    datadir (string): path to training (or validation/test) dataset
        Assumes folder follows this structure:
        ├── datadir
        │   ├── train
        │   │   ├── class0       # folder containing documents of class 0
        │   │   ├── class1       # folder containing documents of class 1
        │   │   ├── class2       # folder containing documents of class 2
        │   │   └── classN       # folder containing documents of class N
        │   └── test
        │       ├── class0       # folder containing documents of class 0
        │       ├── class1       # folder containing documents of class 1
        │       ├── class2       # folder containing documents of class 2
        │       └── classN       # folder containing documents of class N

    target_size (tuple):  image dimensions
    classes (list):  optional list of class subdirectories (e.g., ['cats','dogs'])
    color_mode (string):  color mode
    train_test_names(list): names for train and test subfolders
    data_aug(ImageDataGenerator):  a keras.preprocessing.image.ImageDataGenerator
                                  for data augmentation
    verbose (bool):               verbosity

    Returns:
    batches: a tuple of two Iterators - one for train and one for test
    ```
    """

    # train/test names
    train_str = train_test_names[0]
    test_str = train_test_names[1]
    train_dir = os.path.join(datadir, train_str)
    test_dir = os.path.join(datadir, test_str)

    # color mode warning
    if PIL_INSTALLED:
        inferred_color_mode = detect_color_mode(train_dir)
        if inferred_color_mode is not None and (inferred_color_mode != color_mode):
            U.vprint(
                "color_mode detected (%s) different than color_mode selected (%s)"
                % (inferred_color_mode, color_mode),
                verbose=verbose,
            )

    # get train and test data generators
    (train_datagen, test_datagen) = process_datagen(
        data_aug,
        train_directory=train_dir,
        target_size=target_size,
        color_mode=color_mode,
    )
    batches_tr = train_datagen.flow_from_directory(
        train_dir,
        target_size=target_size,
        classes=classes,
        class_mode="categorical",
        shuffle=True,
        interpolation="bicubic",
        color_mode=color_mode,
    )

    batches_te = test_datagen.flow_from_directory(
        test_dir,
        target_size=target_size,
        classes=classes,
        class_mode="categorical",
        shuffle=False,
        interpolation="bicubic",
        color_mode=color_mode,
    )

    # setup preprocessor
    class_tup = sorted(batches_tr.class_indices.items(), key=operator.itemgetter(1))
    preproc = ImagePreprocessor(
        test_datagen,
        [x[0] for x in class_tup],
        target_size=target_size,
        color_mode=color_mode,
    )
    return (batches_tr, batches_te, preproc)


def images_from_df(
    train_df,
    image_column,
    label_columns=[],
    directory=None,
    val_directory=None,
    suffix="",
    val_df=None,
    is_regression=False,
    target_size=(224, 224),
    color_mode="rgb",
    data_aug=None,
    val_pct=0.1,
    random_state=None,
):
    """
    ```
    Returns image generator (Iterator instance).
    Assumes output will be 2D one-hot-encoded labels for categorization.
    Note: This function preprocesses the input in preparation
          for a ResNet50 model.

    Args:
    train_df (DataFrame):  pandas dataframe for training dataset
    image_column (string): name of column containing the filenames of images
                           If values in image_column do not have a file extension,
                           the extension should be supplied with suffix argument.
                           If values in image_column are not full file paths,
                           then the path to directory containing images should be supplied
                           as directory argument.

    label_columns(list or str): list or str representing the columns that store labels
                                Labels can be in any one of the following formats:
                                1. a single column string string (or integer) labels

                                   image_fname,label
                                   -----------------
                                   image01,cat
                                   image02,dog

                                2. multiple columns for one-hot-encoded labels
                                   image_fname,cat,dog
                                   image01,1,0
                                   image02,0,1

                                3. a single column of numeric values for image regression
                                   image_fname,age
                                   -----------------
                                   image01,68
                                   image02,18

    directory (string): path to directory containing images
                        not required if image_column contains full filepaths
    val_directory(strin): path to directory containing validation images.
                          only required if validation images are in different folder than train images
    suffix(str): will be appended to each entry in image_column
                 Used when the filenames in image_column do not contain file extensions.
                 The extension in suffx should include ".".
    val_df (DataFrame): pandas dataframe for validation set

    is_regression(bool): If True, task is treated as regression.
                         Used when there is single column of numeric values and
                         numeric values should be treated as numeric targets as opposed to class labels
    target_size (tuple):  image dimensions
    color_mode (string):  color mode
    data_aug(ImageDataGenerator):  a keras.preprocessing.image.ImageDataGenerator
                                  for data augmentation
    val_pct(float):  proportion of training data to be used for validation
                     only used if val_filepath is None
    random_state(int): random seed for train/test split

    Returns:
    batches: a tuple of two Iterators - one for train and one for test
    ```
    """

    # read in train and test data
    train_df = train_df.copy()
    if val_df is not None:
        val_df = val_df.copy()
    else:
        train_df, val_df = train_test_split(
            train_df, test_size=val_pct, random_state=random_state
        )

    # transform labels
    ytransdf = U.YTransformDataFrame(label_columns, is_regression=is_regression)
    train_df = ytransdf.apply_train(train_df)
    val_df = ytransdf.apply_test(val_df)
    class_names = ytransdf.get_classes()
    label_columns = ytransdf.get_label_columns(squeeze=True)

    # get train and test data generators
    if directory:
        img_folder = directory
    else:
        img_folder = os.path.dirname(train_df[image_column].iloc[0])
    (train_datagen, test_datagen) = process_datagen(
        data_aug,
        train_directory=img_folder,
        target_size=target_size,
        color_mode=color_mode,
        flat_dir=True,
    )

    # fix file extensions, if necessary
    if suffix:
        train_df = train_df.copy()
        val_df = val_df.copy()
        train_df[image_column] = train_df.copy()[image_column].apply(
            lambda x: str(x) + suffix
        )
        val_df[image_column] = val_df.copy()[image_column].apply(
            lambda x: str(x) + suffix
        )

    # get generators
    batches_tr = train_datagen.flow_from_dataframe(
        train_df,
        directory=directory,
        x_col=image_column,
        y_col=label_columns,
        target_size=target_size,
        class_mode="other",
        shuffle=True,
        interpolation="bicubic",
        color_mode=color_mode,
    )
    batches_te = None
    if val_df is not None:
        d = val_directory if val_directory is not None else directory
        batches_te = test_datagen.flow_from_dataframe(
            val_df,
            directory=d,
            x_col=image_column,
            y_col=label_columns,
            target_size=target_size,
            class_mode="other",
            shuffle=False,
            interpolation="bicubic",
            color_mode=color_mode,
        )

    # setup preprocessor
    preproc = ImagePreprocessor(
        test_datagen, class_names, target_size=target_size, color_mode=color_mode
    )
    return (batches_tr, batches_te, preproc)


def images_from_csv(
    train_filepath,
    image_column,
    label_columns=[],
    directory=None,
    suffix="",
    val_filepath=None,
    is_regression=False,
    target_size=(224, 224),
    color_mode="rgb",
    data_aug=None,
    val_pct=0.1,
    random_state=None,
):
    """
    ```
    Returns image generator (Iterator instance).
    Assumes output will be 2D one-hot-encoded labels for categorization.
    Note: This function preprocesses the input in preparation
          for a ResNet50 model.

    Args:
    train_filepath (string): path to training dataset in CSV format with header row
    image_column (string): name of column containing the filenames of images
                           If values in image_column do not have a file extension,
                           the extension should be supplied with suffix argument.
                           If values in image_column are not full file paths,
                           then the path to directory containing images should be supplied
                           as directory argument.

    label_columns(list or str): list or str representing the columns that store labels
                                Labels can be in any one of the following formats:
                                1. a single column string string (or integer) labels

                                   image_fname,label
                                   -----------------
                                   image01,cat
                                   image02,dog

                                2. multiple columns for one-hot-encoded labels
                                   image_fname,cat,dog
                                   image01,1,0
                                   image02,0,1

                                3. a single column of numeric values for image regression
                                   image_fname,age
                                   -----------------
                                   image01,68
                                   image02,18

    directory (string): path to directory containing images
                        not required if image_column contains full filepaths
    suffix(str): will be appended to each entry in image_column
                 Used when the filenames in image_column do not contain file extensions.
                 The extension in suffx should include ".".
    val_filepath (string): path to validation dataset in CSV format
    suffix(string): suffix to add to file names in image_column
    is_regression(bool): If True, task is treated as regression.
                         Used when there is single column of numeric values and
                         numeric values should be treated as numeric targets as opposed to class labels
    target_size (tuple):  image dimensions
    color_mode (string):  color mode
    data_aug(ImageDataGenerator):  a keras.preprocessing.image.ImageDataGenerator
                                  for data augmentation
    val_pct(float):  proportion of training data to be used for validation
                     only used if val_filepath is None
    random_state(int): random seed for train/test split

    Returns:
    batches: a tuple of two Iterators - one for train and one for test
    ```
    """

    # convert to dataframes
    train_df = pd.read_csv(train_filepath)
    val_df = None
    if val_filepath is not None:
        val_df = pd.read_csv(val_filepath)

    return images_from_df(
        train_df,
        image_column,
        label_columns=label_columns,
        directory=directory,
        suffix=suffix,
        val_df=val_df,
        is_regression=is_regression,
        target_size=target_size,
        color_mode=color_mode,
        data_aug=data_aug,
        val_pct=val_pct,
        random_state=random_state,
    )


def images_from_fname(
    train_folder,
    pattern=r"([^/]+)_\d+.jpg$",
    val_folder=None,
    is_regression=False,
    target_size=(224, 224),
    color_mode="rgb",
    data_aug=None,
    val_pct=0.1,
    random_state=None,
    verbose=1,
):
    """
    ```
    Returns image generator (Iterator instance).

    Args:
    train_folder (str): directory containing images
    pat (str):  regular expression to extract class from file name of each image
                Example: r'([^/]+)_\d+.jpg$' to match 'english_setter' in 'english_setter_140.jpg'
                By default, it will extract classes from file names of the form:
                   <class_name>_<numbers>.jpg
    val_folder (str): directory containing validation images. default:None
    is_regression(bool): If True, task is treated as regression.
                         Used when there is single column of numeric values and
                         numeric values should be treated as numeric targets as opposed to class labels
    target_size (tuple):  image dimensions
    color_mode (string):  color mode
    data_aug(ImageDataGenerator):  a keras.preprocessing.image.ImageDataGenerator
                                  for data augmentation
    val_pct(float):  proportion of training data to be used for validation
                     only used if val_folder is None
    random_state(int): random seed for train/test split
    verbose(bool):   verbosity

    Returns:
    batches: a tuple of two Iterators - one for train and one for test
    ```
    """

    image_column = "image_name"
    label_column = "label"
    train_df = _img_fnames_to_df(
        train_folder,
        pattern,
        image_column=image_column,
        label_column=label_column,
        verbose=verbose,
    )
    val_df = None
    if val_folder is not None:
        val_df = _img_fnames_to_df(
            val_folder,
            pattern,
            image_column=image_column,
            label_column=label_column,
            verbose=verbose,
        )
    return images_from_df(
        train_df,
        image_column,
        label_columns=label_column,
        directory=train_folder,
        val_directory=val_folder,
        val_df=val_df,
        is_regression=is_regression,
        target_size=target_size,
        color_mode=color_mode,
        data_aug=data_aug,
        val_pct=val_pct,
        random_state=random_state,
    )


def _img_fnames_to_df(
    img_folder, pattern, image_column="image_name", label_column="label", verbose=1
):
    # get fnames
    fnames = []
    for ext in ("*.gif", "*.png", "*.jpg"):
        fnames.extend(glob.glob(os.path.join(img_folder, ext)))

    # process filenames and labels
    image_names = []
    labels = []
    p = re.compile(pattern)
    for fname in fnames:
        r = p.search(fname)
        if r:
            image_names.append(os.path.basename(fname))
            labels.append(r.group(1))
        else:
            warnings.warn(
                "Could not extract target for %s -  skipping this file" % (fname)
            )
    dct = {"image_name": image_names, "label": labels}
    return pd.DataFrame(dct)


#    class_names = list(set(labels))
#    class_names.sort()
#    c2i = {k:v for v,k in enumerate(class_names)}
#    labels = [c2i[label] for label in labels]
#    labels = to_categorical(labels)
#    #class_names = [str(c) in class_names]
#    U.vprint('Found %s classes: %s' % (len(class_names), class_names), verbose=verbose)
#    U.vprint('y shape: (%s,%s)' % (labels.shape[0], labels.shape[1]), verbose=verbose)
#    dct = {'image_name': image_names}
#    for i in range(labels.shape[1]):
#        dct[class_names[i]] = labels[:,i]

#    # convert to dataframes
#    df = pd.DataFrame(dct)
#    return (df, class_names)


def images_from_array(
    x_train,
    y_train,
    validation_data=None,
    val_pct=0.1,
    random_state=None,
    data_aug=None,
    classes=None,
    class_names=None,
    is_regression=False,
):
    """
    ```
    Returns image generator (Iterator instance) from training
    and validation data in the form of NumPy arrays.
    This function only supports image classification.
    For image regression, please use images_from_df.

    Args:
      x_train(numpy.ndarray):  training gdata
      y_train(numpy.ndarray):  labels must either be:
                               1. one-hot (or multi-hot) encoded arrays
                               2. integer values representing the label
      validation_data (tuple): tuple of numpy.ndarrays for validation data.
                               labels should be in one of the formats listed above.
      val_pct(float): percentage of training data to use for validaton if validation_data is None
      random_state(int): random state to use for splitting data
      data_aug(ImageDataGenerator):  a keras.preprocessing.image.ImageDataGenerator
      classes(str): old name for class_names - should no longer be used
      class_names(str): list of strings to use as class names
      is_regression(bool): If True, task is treated as regression.
                           Used when there is single column of numeric values and
                           numeric values should be treated as numeric targets as opposed to class labels
    Returns:
      batches: a tuple of two image.Iterator - one for train and one for test and ImagePreprocessor instance
    ```
    """
    if classes is not None:
        raise ValueError('Please use class_names argument instead of "classes".')
    if class_names and is_regression:
        warnings.warn(
            "is_regression=True, but class_names is not empty.  Task being treated as regression."
        )

    # split out validation set if necessary
    if validation_data:
        x_test = validation_data[0]
        y_test = validation_data[1]
    elif val_pct is not None and val_pct > 0:
        x_train, x_test, y_train, y_test = train_test_split(
            x_train, y_train, test_size=val_pct, random_state=random_state
        )
    else:
        x_test = None
        y_test = None

    # transform labels
    ytrans = U.YTransform(class_names=class_names if not is_regression else [])
    y_train = ytrans.apply_train(y_train)
    y_test = ytrans.apply_test(y_test)
    class_names = ytrans.get_classes()

    # train and test data generators
    (train_datagen, test_datagen) = process_datagen(data_aug, train_array=x_train)

    # Image preprocessor
    preproc = ImagePreprocessor(
        test_datagen, class_names, target_size=None, color_mode=None
    )

    # training data
    batches_tr = train_datagen.flow(x_train, y_train, shuffle=True)

    # validation data
    batches_te = None
    if x_test is not None and y_test is not None:
        batches_te = test_datagen.flow(x_test, y_test, shuffle=False)
    return (batches_tr, batches_te, preproc)

Functions

def datagen_needs_fit(datagen)
Expand source code
def datagen_needs_fit(datagen):
    if (
        datagen.featurewise_center
        or datagen.featurewise_std_normalization
        or datagen.zca_whitening
    ):
        return True
    else:
        return False
def detect_color_mode(train_directory, target_size=(32, 32))
Expand source code
def detect_color_mode(train_directory, target_size=(32, 32)):
    try:
        fname = glob.glob(os.path.join(train_directory, "**/*"))[0]
        img = Image.open(fname).resize(target_size)
        num_channels = len(img.getbands())
        if num_channels == 3:
            return "rgb"
        elif num_channels == 1:
            return "grayscale"
        else:
            return "rgby"
    except:
        warnings.warn("could not detect color_mode from %s" % (train_directory))
        return
def fit_datagens(train_datagen, test_datagen, train_array=None, train_directory=None, target_size=None, color_mode='rgb', flat_dir=False)
computes stats of images for normalization
Expand source code
def fit_datagens(
    train_datagen,
    test_datagen,
    train_array=None,
    train_directory=None,
    target_size=None,
    color_mode="rgb",
    flat_dir=False,
):
    """
    ```
    computes stats of images for normalization
    ```
    """
    if not datagen_needs_fit(train_datagen):
        return
    if bool(train_array is not None) == bool(train_directory):
        raise ValueError("only one of train_array or train_directory is required.")
    if train_array is not None:
        train_datagen.fit(train_array)
        test_datagen.fit(train_array)
    else:
        if target_size is None:
            raise ValueError("target_size is required when train_directory is supplied")
        fit_samples = sample_image_folder(
            train_directory, target_size, color_mode=color_mode, flat_dir=flat_dir
        )
        train_datagen.fit(fit_samples)
        test_datagen.fit(fit_samples)
    return
def get_data_aug(rotation_range=40, zoom_range=0.2, width_shift_range=0.2, height_shift_range=0.2, horizontal_flip=False, vertical_flip=False, featurewise_center=True, featurewise_std_normalization=True, samplewise_center=False, samplewise_std_normalization=False, rescale=None, **kwargs)
This function is simply a wrapper around ImageDataGenerator
with some reasonable defaults for data augmentation.
Returns the default image_data_generator to support
data augmentation and data normalization.
Parameters can be adjusted by caller.
Note that the ktrain.vision.model.image_classifier
function may adjust these as needed.
Expand source code
def get_data_aug(
    rotation_range=40,
    zoom_range=0.2,
    width_shift_range=0.2,
    height_shift_range=0.2,
    horizontal_flip=False,
    vertical_flip=False,
    featurewise_center=True,
    featurewise_std_normalization=True,
    samplewise_center=False,
    samplewise_std_normalization=False,
    rescale=None,
    **kwargs
):
    """
    ```
    This function is simply a wrapper around ImageDataGenerator
    with some reasonable defaults for data augmentation.
    Returns the default image_data_generator to support
    data augmentation and data normalization.
    Parameters can be adjusted by caller.
    Note that the ktrain.vision.model.image_classifier
    function may adjust these as needed.
    ```
    """

    data_aug = keras.preprocessing.image.ImageDataGenerator(
        rotation_range=rotation_range,
        zoom_range=zoom_range,
        width_shift_range=width_shift_range,
        height_shift_range=height_shift_range,
        horizontal_flip=horizontal_flip,
        vertical_flip=vertical_flip,
        featurewise_center=featurewise_center,
        featurewise_std_normalization=featurewise_std_normalization,
        samplewise_center=samplewise_center,
        samplewise_std_normalization=samplewise_std_normalization,
        rescale=rescale,
        **kwargs
    )
    return data_aug
def get_test_datagen(data_aug=None)
Expand source code
def get_test_datagen(data_aug=None):
    if data_aug:
        featurewise_center = data_aug.featurewise_center
        featurewise_std_normalization = data_aug.featurewise_std_normalization
        samplewise_center = data_aug.samplewise_center
        samplewise_std_normalization = data_aug.samplewise_std_normalization
        rescale = data_aug.rescale
        zca_whitening = data_aug.zca_whitening
        test_datagen = keras.preprocessing.image.ImageDataGenerator(
            rescale=rescale,
            featurewise_center=featurewise_center,
            samplewise_center=samplewise_center,
            featurewise_std_normalization=featurewise_std_normalization,
            samplewise_std_normalization=samplewise_std_normalization,
            zca_whitening=zca_whitening,
        )
    else:
        test_datagen = keras.preprocessing.image.ImageDataGenerator()
    return test_datagen
def images_from_array(x_train, y_train, validation_data=None, val_pct=0.1, random_state=None, data_aug=None, classes=None, class_names=None, is_regression=False)
Returns image generator (Iterator instance) from training
and validation data in the form of NumPy arrays.
This function only supports image classification.
For image regression, please use images_from_df.

Args:
  x_train(numpy.ndarray):  training gdata
  y_train(numpy.ndarray):  labels must either be:
                           1. one-hot (or multi-hot) encoded arrays
                           2. integer values representing the label
  validation_data (tuple): tuple of numpy.ndarrays for validation data.
                           labels should be in one of the formats listed above.
  val_pct(float): percentage of training data to use for validaton if validation_data is None
  random_state(int): random state to use for splitting data
  data_aug(ImageDataGenerator):  a keras.preprocessing.image.ImageDataGenerator
  classes(str): old name for class_names - should no longer be used
  class_names(str): list of strings to use as class names
  is_regression(bool): If True, task is treated as regression.
                       Used when there is single column of numeric values and
                       numeric values should be treated as numeric targets as opposed to class labels
Returns:
  batches: a tuple of two image.Iterator - one for train and one for test and ImagePreprocessor instance
Expand source code
def images_from_array(
    x_train,
    y_train,
    validation_data=None,
    val_pct=0.1,
    random_state=None,
    data_aug=None,
    classes=None,
    class_names=None,
    is_regression=False,
):
    """
    ```
    Returns image generator (Iterator instance) from training
    and validation data in the form of NumPy arrays.
    This function only supports image classification.
    For image regression, please use images_from_df.

    Args:
      x_train(numpy.ndarray):  training gdata
      y_train(numpy.ndarray):  labels must either be:
                               1. one-hot (or multi-hot) encoded arrays
                               2. integer values representing the label
      validation_data (tuple): tuple of numpy.ndarrays for validation data.
                               labels should be in one of the formats listed above.
      val_pct(float): percentage of training data to use for validaton if validation_data is None
      random_state(int): random state to use for splitting data
      data_aug(ImageDataGenerator):  a keras.preprocessing.image.ImageDataGenerator
      classes(str): old name for class_names - should no longer be used
      class_names(str): list of strings to use as class names
      is_regression(bool): If True, task is treated as regression.
                           Used when there is single column of numeric values and
                           numeric values should be treated as numeric targets as opposed to class labels
    Returns:
      batches: a tuple of two image.Iterator - one for train and one for test and ImagePreprocessor instance
    ```
    """
    if classes is not None:
        raise ValueError('Please use class_names argument instead of "classes".')
    if class_names and is_regression:
        warnings.warn(
            "is_regression=True, but class_names is not empty.  Task being treated as regression."
        )

    # split out validation set if necessary
    if validation_data:
        x_test = validation_data[0]
        y_test = validation_data[1]
    elif val_pct is not None and val_pct > 0:
        x_train, x_test, y_train, y_test = train_test_split(
            x_train, y_train, test_size=val_pct, random_state=random_state
        )
    else:
        x_test = None
        y_test = None

    # transform labels
    ytrans = U.YTransform(class_names=class_names if not is_regression else [])
    y_train = ytrans.apply_train(y_train)
    y_test = ytrans.apply_test(y_test)
    class_names = ytrans.get_classes()

    # train and test data generators
    (train_datagen, test_datagen) = process_datagen(data_aug, train_array=x_train)

    # Image preprocessor
    preproc = ImagePreprocessor(
        test_datagen, class_names, target_size=None, color_mode=None
    )

    # training data
    batches_tr = train_datagen.flow(x_train, y_train, shuffle=True)

    # validation data
    batches_te = None
    if x_test is not None and y_test is not None:
        batches_te = test_datagen.flow(x_test, y_test, shuffle=False)
    return (batches_tr, batches_te, preproc)
def images_from_csv(train_filepath, image_column, label_columns=[], directory=None, suffix='', val_filepath=None, is_regression=False, target_size=(224, 224), color_mode='rgb', data_aug=None, val_pct=0.1, random_state=None)
Returns image generator (Iterator instance).
Assumes output will be 2D one-hot-encoded labels for categorization.
Note: This function preprocesses the input in preparation
      for a ResNet50 model.

Args:
train_filepath (string): path to training dataset in CSV format with header row
image_column (string): name of column containing the filenames of images
                       If values in image_column do not have a file extension,
                       the extension should be supplied with suffix argument.
                       If values in image_column are not full file paths,
                       then the path to directory containing images should be supplied
                       as directory argument.

label_columns(list or str): list or str representing the columns that store labels
                            Labels can be in any one of the following formats:
                            1. a single column string string (or integer) labels

                               image_fname,label
                               -----------------
                               image01,cat
                               image02,dog

                            2. multiple columns for one-hot-encoded labels
                               image_fname,cat,dog
                               image01,1,0
                               image02,0,1

                            3. a single column of numeric values for image regression
                               image_fname,age
                               -----------------
                               image01,68
                               image02,18

directory (string): path to directory containing images
                    not required if image_column contains full filepaths
suffix(str): will be appended to each entry in image_column
             Used when the filenames in image_column do not contain file extensions.
             The extension in suffx should include ".".
val_filepath (string): path to validation dataset in CSV format
suffix(string): suffix to add to file names in image_column
is_regression(bool): If True, task is treated as regression.
                     Used when there is single column of numeric values and
                     numeric values should be treated as numeric targets as opposed to class labels
target_size (tuple):  image dimensions
color_mode (string):  color mode
data_aug(ImageDataGenerator):  a keras.preprocessing.image.ImageDataGenerator
                              for data augmentation
val_pct(float):  proportion of training data to be used for validation
                 only used if val_filepath is None
random_state(int): random seed for train/test split

Returns:
batches: a tuple of two Iterators - one for train and one for test
Expand source code
def images_from_csv(
    train_filepath,
    image_column,
    label_columns=[],
    directory=None,
    suffix="",
    val_filepath=None,
    is_regression=False,
    target_size=(224, 224),
    color_mode="rgb",
    data_aug=None,
    val_pct=0.1,
    random_state=None,
):
    """
    ```
    Returns image generator (Iterator instance).
    Assumes output will be 2D one-hot-encoded labels for categorization.
    Note: This function preprocesses the input in preparation
          for a ResNet50 model.

    Args:
    train_filepath (string): path to training dataset in CSV format with header row
    image_column (string): name of column containing the filenames of images
                           If values in image_column do not have a file extension,
                           the extension should be supplied with suffix argument.
                           If values in image_column are not full file paths,
                           then the path to directory containing images should be supplied
                           as directory argument.

    label_columns(list or str): list or str representing the columns that store labels
                                Labels can be in any one of the following formats:
                                1. a single column string string (or integer) labels

                                   image_fname,label
                                   -----------------
                                   image01,cat
                                   image02,dog

                                2. multiple columns for one-hot-encoded labels
                                   image_fname,cat,dog
                                   image01,1,0
                                   image02,0,1

                                3. a single column of numeric values for image regression
                                   image_fname,age
                                   -----------------
                                   image01,68
                                   image02,18

    directory (string): path to directory containing images
                        not required if image_column contains full filepaths
    suffix(str): will be appended to each entry in image_column
                 Used when the filenames in image_column do not contain file extensions.
                 The extension in suffx should include ".".
    val_filepath (string): path to validation dataset in CSV format
    suffix(string): suffix to add to file names in image_column
    is_regression(bool): If True, task is treated as regression.
                         Used when there is single column of numeric values and
                         numeric values should be treated as numeric targets as opposed to class labels
    target_size (tuple):  image dimensions
    color_mode (string):  color mode
    data_aug(ImageDataGenerator):  a keras.preprocessing.image.ImageDataGenerator
                                  for data augmentation
    val_pct(float):  proportion of training data to be used for validation
                     only used if val_filepath is None
    random_state(int): random seed for train/test split

    Returns:
    batches: a tuple of two Iterators - one for train and one for test
    ```
    """

    # convert to dataframes
    train_df = pd.read_csv(train_filepath)
    val_df = None
    if val_filepath is not None:
        val_df = pd.read_csv(val_filepath)

    return images_from_df(
        train_df,
        image_column,
        label_columns=label_columns,
        directory=directory,
        suffix=suffix,
        val_df=val_df,
        is_regression=is_regression,
        target_size=target_size,
        color_mode=color_mode,
        data_aug=data_aug,
        val_pct=val_pct,
        random_state=random_state,
    )
def images_from_df(train_df, image_column, label_columns=[], directory=None, val_directory=None, suffix='', val_df=None, is_regression=False, target_size=(224, 224), color_mode='rgb', data_aug=None, val_pct=0.1, random_state=None)
Returns image generator (Iterator instance).
Assumes output will be 2D one-hot-encoded labels for categorization.
Note: This function preprocesses the input in preparation
      for a ResNet50 model.

Args:
train_df (DataFrame):  pandas dataframe for training dataset
image_column (string): name of column containing the filenames of images
                       If values in image_column do not have a file extension,
                       the extension should be supplied with suffix argument.
                       If values in image_column are not full file paths,
                       then the path to directory containing images should be supplied
                       as directory argument.

label_columns(list or str): list or str representing the columns that store labels
                            Labels can be in any one of the following formats:
                            1. a single column string string (or integer) labels

                               image_fname,label
                               -----------------
                               image01,cat
                               image02,dog

                            2. multiple columns for one-hot-encoded labels
                               image_fname,cat,dog
                               image01,1,0
                               image02,0,1

                            3. a single column of numeric values for image regression
                               image_fname,age
                               -----------------
                               image01,68
                               image02,18

directory (string): path to directory containing images
                    not required if image_column contains full filepaths
val_directory(strin): path to directory containing validation images.
                      only required if validation images are in different folder than train images
suffix(str): will be appended to each entry in image_column
             Used when the filenames in image_column do not contain file extensions.
             The extension in suffx should include ".".
val_df (DataFrame): pandas dataframe for validation set

is_regression(bool): If True, task is treated as regression.
                     Used when there is single column of numeric values and
                     numeric values should be treated as numeric targets as opposed to class labels
target_size (tuple):  image dimensions
color_mode (string):  color mode
data_aug(ImageDataGenerator):  a keras.preprocessing.image.ImageDataGenerator
                              for data augmentation
val_pct(float):  proportion of training data to be used for validation
                 only used if val_filepath is None
random_state(int): random seed for train/test split

Returns:
batches: a tuple of two Iterators - one for train and one for test
Expand source code
def images_from_df(
    train_df,
    image_column,
    label_columns=[],
    directory=None,
    val_directory=None,
    suffix="",
    val_df=None,
    is_regression=False,
    target_size=(224, 224),
    color_mode="rgb",
    data_aug=None,
    val_pct=0.1,
    random_state=None,
):
    """
    ```
    Returns image generator (Iterator instance).
    Assumes output will be 2D one-hot-encoded labels for categorization.
    Note: This function preprocesses the input in preparation
          for a ResNet50 model.

    Args:
    train_df (DataFrame):  pandas dataframe for training dataset
    image_column (string): name of column containing the filenames of images
                           If values in image_column do not have a file extension,
                           the extension should be supplied with suffix argument.
                           If values in image_column are not full file paths,
                           then the path to directory containing images should be supplied
                           as directory argument.

    label_columns(list or str): list or str representing the columns that store labels
                                Labels can be in any one of the following formats:
                                1. a single column string string (or integer) labels

                                   image_fname,label
                                   -----------------
                                   image01,cat
                                   image02,dog

                                2. multiple columns for one-hot-encoded labels
                                   image_fname,cat,dog
                                   image01,1,0
                                   image02,0,1

                                3. a single column of numeric values for image regression
                                   image_fname,age
                                   -----------------
                                   image01,68
                                   image02,18

    directory (string): path to directory containing images
                        not required if image_column contains full filepaths
    val_directory(strin): path to directory containing validation images.
                          only required if validation images are in different folder than train images
    suffix(str): will be appended to each entry in image_column
                 Used when the filenames in image_column do not contain file extensions.
                 The extension in suffx should include ".".
    val_df (DataFrame): pandas dataframe for validation set

    is_regression(bool): If True, task is treated as regression.
                         Used when there is single column of numeric values and
                         numeric values should be treated as numeric targets as opposed to class labels
    target_size (tuple):  image dimensions
    color_mode (string):  color mode
    data_aug(ImageDataGenerator):  a keras.preprocessing.image.ImageDataGenerator
                                  for data augmentation
    val_pct(float):  proportion of training data to be used for validation
                     only used if val_filepath is None
    random_state(int): random seed for train/test split

    Returns:
    batches: a tuple of two Iterators - one for train and one for test
    ```
    """

    # read in train and test data
    train_df = train_df.copy()
    if val_df is not None:
        val_df = val_df.copy()
    else:
        train_df, val_df = train_test_split(
            train_df, test_size=val_pct, random_state=random_state
        )

    # transform labels
    ytransdf = U.YTransformDataFrame(label_columns, is_regression=is_regression)
    train_df = ytransdf.apply_train(train_df)
    val_df = ytransdf.apply_test(val_df)
    class_names = ytransdf.get_classes()
    label_columns = ytransdf.get_label_columns(squeeze=True)

    # get train and test data generators
    if directory:
        img_folder = directory
    else:
        img_folder = os.path.dirname(train_df[image_column].iloc[0])
    (train_datagen, test_datagen) = process_datagen(
        data_aug,
        train_directory=img_folder,
        target_size=target_size,
        color_mode=color_mode,
        flat_dir=True,
    )

    # fix file extensions, if necessary
    if suffix:
        train_df = train_df.copy()
        val_df = val_df.copy()
        train_df[image_column] = train_df.copy()[image_column].apply(
            lambda x: str(x) + suffix
        )
        val_df[image_column] = val_df.copy()[image_column].apply(
            lambda x: str(x) + suffix
        )

    # get generators
    batches_tr = train_datagen.flow_from_dataframe(
        train_df,
        directory=directory,
        x_col=image_column,
        y_col=label_columns,
        target_size=target_size,
        class_mode="other",
        shuffle=True,
        interpolation="bicubic",
        color_mode=color_mode,
    )
    batches_te = None
    if val_df is not None:
        d = val_directory if val_directory is not None else directory
        batches_te = test_datagen.flow_from_dataframe(
            val_df,
            directory=d,
            x_col=image_column,
            y_col=label_columns,
            target_size=target_size,
            class_mode="other",
            shuffle=False,
            interpolation="bicubic",
            color_mode=color_mode,
        )

    # setup preprocessor
    preproc = ImagePreprocessor(
        test_datagen, class_names, target_size=target_size, color_mode=color_mode
    )
    return (batches_tr, batches_te, preproc)
def images_from_fname(train_folder, pattern='([^/]+)_\\d+.jpg$', val_folder=None, is_regression=False, target_size=(224, 224), color_mode='rgb', data_aug=None, val_pct=0.1, random_state=None, verbose=1)
Returns image generator (Iterator instance).

Args:
train_folder (str): directory containing images
pat (str):  regular expression to extract class from file name of each image
            Example: r'([^/]+)_\d+.jpg$' to match 'english_setter' in 'english_setter_140.jpg'
            By default, it will extract classes from file names of the form:
               <class_name>_<numbers>.jpg
val_folder (str): directory containing validation images. default:None
is_regression(bool): If True, task is treated as regression.
                     Used when there is single column of numeric values and
                     numeric values should be treated as numeric targets as opposed to class labels
target_size (tuple):  image dimensions
color_mode (string):  color mode
data_aug(ImageDataGenerator):  a keras.preprocessing.image.ImageDataGenerator
                              for data augmentation
val_pct(float):  proportion of training data to be used for validation
                 only used if val_folder is None
random_state(int): random seed for train/test split
verbose(bool):   verbosity

Returns:
batches: a tuple of two Iterators - one for train and one for test
Expand source code
def images_from_fname(
    train_folder,
    pattern=r"([^/]+)_\d+.jpg$",
    val_folder=None,
    is_regression=False,
    target_size=(224, 224),
    color_mode="rgb",
    data_aug=None,
    val_pct=0.1,
    random_state=None,
    verbose=1,
):
    """
    ```
    Returns image generator (Iterator instance).

    Args:
    train_folder (str): directory containing images
    pat (str):  regular expression to extract class from file name of each image
                Example: r'([^/]+)_\d+.jpg$' to match 'english_setter' in 'english_setter_140.jpg'
                By default, it will extract classes from file names of the form:
                   <class_name>_<numbers>.jpg
    val_folder (str): directory containing validation images. default:None
    is_regression(bool): If True, task is treated as regression.
                         Used when there is single column of numeric values and
                         numeric values should be treated as numeric targets as opposed to class labels
    target_size (tuple):  image dimensions
    color_mode (string):  color mode
    data_aug(ImageDataGenerator):  a keras.preprocessing.image.ImageDataGenerator
                                  for data augmentation
    val_pct(float):  proportion of training data to be used for validation
                     only used if val_folder is None
    random_state(int): random seed for train/test split
    verbose(bool):   verbosity

    Returns:
    batches: a tuple of two Iterators - one for train and one for test
    ```
    """

    image_column = "image_name"
    label_column = "label"
    train_df = _img_fnames_to_df(
        train_folder,
        pattern,
        image_column=image_column,
        label_column=label_column,
        verbose=verbose,
    )
    val_df = None
    if val_folder is not None:
        val_df = _img_fnames_to_df(
            val_folder,
            pattern,
            image_column=image_column,
            label_column=label_column,
            verbose=verbose,
        )
    return images_from_df(
        train_df,
        image_column,
        label_columns=label_column,
        directory=train_folder,
        val_directory=val_folder,
        val_df=val_df,
        is_regression=is_regression,
        target_size=target_size,
        color_mode=color_mode,
        data_aug=data_aug,
        val_pct=val_pct,
        random_state=random_state,
    )
def images_from_folder(datadir, target_size=(224, 224), classes=None, color_mode='rgb', train_test_names=['train', 'test'], data_aug=None, verbose=1)
Returns image generator (Iterator instance).
Assumes output will be 2D one-hot-encoded labels for categorization.
Note: This function preprocesses the input in preparation
      for a ResNet50 model.

Args:
datadir (string): path to training (or validation/test) dataset
    Assumes folder follows this structure:
    ├── datadir
    │   ├── train
    │   │   ├── class0       # folder containing documents of class 0
    │   │   ├── class1       # folder containing documents of class 1
    │   │   ├── class2       # folder containing documents of class 2
    │   │   └── classN       # folder containing documents of class N
    │   └── test
    │       ├── class0       # folder containing documents of class 0
    │       ├── class1       # folder containing documents of class 1
    │       ├── class2       # folder containing documents of class 2
    │       └── classN       # folder containing documents of class N

target_size (tuple):  image dimensions
classes (list):  optional list of class subdirectories (e.g., ['cats','dogs'])
color_mode (string):  color mode
train_test_names(list): names for train and test subfolders
data_aug(ImageDataGenerator):  a keras.preprocessing.image.ImageDataGenerator
                              for data augmentation
verbose (bool):               verbosity

Returns:
batches: a tuple of two Iterators - one for train and one for test
Expand source code
def images_from_folder(
    datadir,
    target_size=(224, 224),
    classes=None,
    color_mode="rgb",
    train_test_names=["train", "test"],
    data_aug=None,
    verbose=1,
):
    """
    ```
    Returns image generator (Iterator instance).
    Assumes output will be 2D one-hot-encoded labels for categorization.
    Note: This function preprocesses the input in preparation
          for a ResNet50 model.

    Args:
    datadir (string): path to training (or validation/test) dataset
        Assumes folder follows this structure:
        ├── datadir
        │   ├── train
        │   │   ├── class0       # folder containing documents of class 0
        │   │   ├── class1       # folder containing documents of class 1
        │   │   ├── class2       # folder containing documents of class 2
        │   │   └── classN       # folder containing documents of class N
        │   └── test
        │       ├── class0       # folder containing documents of class 0
        │       ├── class1       # folder containing documents of class 1
        │       ├── class2       # folder containing documents of class 2
        │       └── classN       # folder containing documents of class N

    target_size (tuple):  image dimensions
    classes (list):  optional list of class subdirectories (e.g., ['cats','dogs'])
    color_mode (string):  color mode
    train_test_names(list): names for train and test subfolders
    data_aug(ImageDataGenerator):  a keras.preprocessing.image.ImageDataGenerator
                                  for data augmentation
    verbose (bool):               verbosity

    Returns:
    batches: a tuple of two Iterators - one for train and one for test
    ```
    """

    # train/test names
    train_str = train_test_names[0]
    test_str = train_test_names[1]
    train_dir = os.path.join(datadir, train_str)
    test_dir = os.path.join(datadir, test_str)

    # color mode warning
    if PIL_INSTALLED:
        inferred_color_mode = detect_color_mode(train_dir)
        if inferred_color_mode is not None and (inferred_color_mode != color_mode):
            U.vprint(
                "color_mode detected (%s) different than color_mode selected (%s)"
                % (inferred_color_mode, color_mode),
                verbose=verbose,
            )

    # get train and test data generators
    (train_datagen, test_datagen) = process_datagen(
        data_aug,
        train_directory=train_dir,
        target_size=target_size,
        color_mode=color_mode,
    )
    batches_tr = train_datagen.flow_from_directory(
        train_dir,
        target_size=target_size,
        classes=classes,
        class_mode="categorical",
        shuffle=True,
        interpolation="bicubic",
        color_mode=color_mode,
    )

    batches_te = test_datagen.flow_from_directory(
        test_dir,
        target_size=target_size,
        classes=classes,
        class_mode="categorical",
        shuffle=False,
        interpolation="bicubic",
        color_mode=color_mode,
    )

    # setup preprocessor
    class_tup = sorted(batches_tr.class_indices.items(), key=operator.itemgetter(1))
    preproc = ImagePreprocessor(
        test_datagen,
        [x[0] for x in class_tup],
        target_size=target_size,
        color_mode=color_mode,
    )
    return (batches_tr, batches_te, preproc)
def preprocess_csv(csv_in, csv_out, x_col='filename', y_col=None, sep=',', label_sep=' ', suffix='', split_by=None)
Takes a CSV where the one column contains a file name and a column
containing a string representations of the class(es) like here:
image_name,tags
01, sunny|hot
02, cloudy|cold
03, cloudy|hot

.... and one-hot encodes the classes to produce a CSV as follows:
image_name, cloudy, cold, hot, sunny
01.jpg,0,0,1,1
02.jpg,1,1,0,0
03.jpg,1,0,1,0
Args:
    csv_in (str):  filepath to input CSV file
    csv_out (str): filepath to output CSV file
    x_col (str):  name of column containing file names
    y_col (str): name of column containing the classes
    sep (str): field delimiter of entire file (e.g., comma fore CSV)
    label_sep (str): delimiter for column containing classes
    suffix (str): adds suffix to x_col values
    split_by(str): name of column. A separate CSV will be
                   created for each value in column. Useful
                   for splitting a CSV based on whether a column
                   contains 'train' or 'valid'.
Return:
    list :  the list of clases (and csv_out will be new CSV file)
Expand source code
def preprocess_csv(
    csv_in,
    csv_out,
    x_col="filename",
    y_col=None,
    sep=",",
    label_sep=" ",
    suffix="",
    split_by=None,
):
    """
    ```
    Takes a CSV where the one column contains a file name and a column
    containing a string representations of the class(es) like here:
    image_name,tags
    01, sunny|hot
    02, cloudy|cold
    03, cloudy|hot

    .... and one-hot encodes the classes to produce a CSV as follows:
    image_name, cloudy, cold, hot, sunny
    01.jpg,0,0,1,1
    02.jpg,1,1,0,0
    03.jpg,1,0,1,0
    Args:
        csv_in (str):  filepath to input CSV file
        csv_out (str): filepath to output CSV file
        x_col (str):  name of column containing file names
        y_col (str): name of column containing the classes
        sep (str): field delimiter of entire file (e.g., comma fore CSV)
        label_sep (str): delimiter for column containing classes
        suffix (str): adds suffix to x_col values
        split_by(str): name of column. A separate CSV will be
                       created for each value in column. Useful
                       for splitting a CSV based on whether a column
                       contains 'train' or 'valid'.
    Return:
        list :  the list of clases (and csv_out will be new CSV file)
    ```
    """
    if not y_col and not suffix:
        raise ValueError("one or both of y_col and suffix should be supplied")
    df = pd.read_csv(csv_in, sep=sep)
    f_csv_out = open(csv_out, "w")
    writer = csv.writer(f_csv_out, delimiter=sep)
    if y_col:
        df[y_col] = df[y_col].apply(str)

    # write header
    if y_col:
        classes = set()
        for row in df.iterrows():
            data = row[1]
            tags = data[y_col].split(label_sep)
            classes.update(tags)
        classes = list(classes)
        classes.sort()
        writer.writerow([x_col] + classes)
    else:
        classes = df.columns[:-1]
        write.writerow(df.columns)

    # write rows
    for row in df.iterrows():
        data = row[1]
        data[x_col] = data[x_col] + suffix
        if y_col:
            out = list(data[[x_col]].values)
            tags = set(data[y_col].strip().split(label_sep))
            for c in classes:
                if c in tags:
                    out.append(1)
                else:
                    out.append(0)
        else:
            out = data
        writer.writerow(out)
    f_csv_out.close()
    return classes
def preview_data_aug(img_path, data_aug, rows=1, n=4)
Preview data augmentation (ImageDatagenerator)
on a supplied image.
Expand source code
def preview_data_aug(img_path, data_aug, rows=1, n=4):
    """
    ```
    Preview data augmentation (ImageDatagenerator)
    on a supplied image.
    ```
    """
    if type(img_path) != type("") or not os.path.isfile(img_path):
        raise ValueError("img_path must be valid file path to image")
    idg = copy.copy(data_aug)
    idg.featurewise_center = False
    idg.featurewise_std_normalization = False
    idg.samplewise_center = False
    idg.samplewise_std_normalization = False
    idg.rescale = None
    idg.zca_whitening = False
    idg.preprocessing_function = None

    img = keras.preprocessing.image.load_img(img_path)
    x = img_to_array(img)
    x = x / 255.0
    x = x.reshape((1,) + x.shape)
    i = 0
    ims = []
    for batch in idg.flow(x, batch_size=1):
        ims.append(np.squeeze(batch))
        i += 1
        if i >= n:
            break
    U.plots(ims, rows=rows)
    return
def preview_data_aug_OLD(img_path, data_aug, n=4)
Preview data augmentation (ImageDatagenerator)
on a supplied image.
Expand source code
def preview_data_aug_OLD(img_path, data_aug, n=4):
    """
    ```
    Preview data augmentation (ImageDatagenerator)
    on a supplied image.
    ```
    """
    if type(img_path) != type("") or not os.path.isfile(img_path):
        raise ValueError("img_path must be valid file path to image")
    idg = copy.copy(data_aug)
    idg.featurewise_center = False
    idg.featurewise_std_normalization = False
    idg.samplewise_center = False
    idg.samplewise_std_normalization = False
    idg.rescale = None
    idg.zca_whitening = False
    idg.preprocessing_function = None

    img = keras.preprocessing.image.load_img(img_path)
    x = img_to_array(img)
    x = x / 255.0
    x = x.reshape((1,) + x.shape)
    i = 0
    for batch in idg.flow(x, batch_size=1):
        plt.figure()
        plt.imshow(np.squeeze(batch))
        i += 1
        if i >= n:
            break
    return
def process_datagen(data_aug, train_array=None, train_directory=None, target_size=None, color_mode='rgb', flat_dir=False)
Expand source code
def process_datagen(
    data_aug,
    train_array=None,
    train_directory=None,
    target_size=None,
    color_mode="rgb",
    flat_dir=False,
):
    # set generators for train and test
    if data_aug is not None:
        train_datagen = data_aug
        test_datagen = get_test_datagen(data_aug=data_aug)
    else:
        train_datagen = get_test_datagen()
        test_datagen = get_test_datagen()

    # compute statistics for normalization
    fit_datagens(
        train_datagen,
        test_datagen,
        train_array=train_array,
        train_directory=train_directory,
        target_size=target_size,
        color_mode=color_mode,
        flat_dir=flat_dir,
    )

    return (train_datagen, test_datagen)
def sample_image_folder(train_directory, target_size, color_mode='rgb', flat_dir=False)
Expand source code
def sample_image_folder(train_directory, target_size, color_mode="rgb", flat_dir=False):
    # adjust train_directory
    classes = None
    if flat_dir and train_directory is not None:
        folder = train_directory
        if folder[-1] != os.sep:
            folder += os.sep
        parent = os.path.dirname(os.path.dirname(folder))
        folder_name = os.path.basename(os.path.dirname(folder))
        train_directory = parent
        classes = [folder_name]

    # sample images
    batch_size = 100
    img_gen = keras.preprocessing.image.ImageDataGenerator()
    batches = img_gen.flow_from_directory(
        directory=train_directory,
        classes=classes,
        target_size=target_size,
        batch_size=batch_size,
        color_mode=color_mode,
        shuffle=True,
    )
    the_shape = batches[0][0].shape
    sample_size = the_shape[0]
    if K.image_data_format() == "channels_first":
        num_channels = the_shape[1]
    else:
        num_channels = the_shape[-1]
    imgs, labels = next(batches)
    return imgs
def show_image(img_path)
Given file path to image, show it in Jupyter notebook
Expand source code
def show_image(img_path):
    """
    ```
    Given file path to image, show it in Jupyter notebook
    ```
    """
    if not os.path.isfile(img_path):
        raise ValueError("%s is not valid file" % (img_path))
    img = plt.imread(img_path)
    out = plt.imshow(img)
    return out
def show_random_images(img_folder, n=4, rows=1)
display random images from a img_folder
Expand source code
def show_random_images(img_folder, n=4, rows=1):
    """
    ```
    display random images from a img_folder
    ```
    """
    fnames = []
    for ext in ("*.gif", "*.png", "*.jpg"):
        fnames.extend(glob.glob(os.path.join(img_folder, ext)))
    ims = []
    for i in range(n):
        img_path = random.choice(fnames)
        img = keras.preprocessing.image.load_img(img_path)
        x = img_to_array(img)
        x = x / 255.0
        ims.append(x)
    U.plots(ims, rows=rows)
    return