Module ktrain.torch_base
Expand source code
import warnings
class TorchBase:
"""
Utility methods for working pretrained Torch models
"""
def __init__(self, device, quantize=False, min_transformers_version=None):
if min_transformers_version is not None:
import transformers
from packaging import version
if version.parse(transformers.__version__) < version.parse(
min_transformers_version
):
raise Exception(
f"This feature requires transformers>={min_transformers_version}. "
+ "It is usually safe for you to manually upgrade transformers even if ktrain installed a lower version."
)
try:
import torch
except (ImportError, OSError):
raise Exception(
"This capability in ktrain requires PyTorch to be installed. Please install for your environment: "
+ "https://pytorch.org/get-started/locally/"
)
self.quantize = quantize
self.torch_device = device
if self.torch_device is None:
self.torch_device = "cuda" if torch.cuda.is_available() else "cpu"
def quantize_model(self, model):
"""
quantize a model
"""
import torch
if self.torch_device == "cpu":
return torch.quantization.quantize_dynamic(
model, {torch.nn.Linear}, dtype=torch.qint8
)
elif self.torch_device != "cpu":
return model.half()
def device_to_id(self, device_str=None):
device_str = self.torch_device if device_str is None else device_str
if device_str.lower() == "cpu":
return -1
elif device_str.lower() == "cuda":
return 0
elif device_str.lower().startswith("cuda:"):
_, device_id = device_str.split(":")[1]
device_id = int(device_id)
return device_id
else:
warnings.warn("Could not determine device ID - defaulting to -1")
return -1
Classes
class TorchBase (device, quantize=False, min_transformers_version=None)
-
Utility methods for working pretrained Torch models
Expand source code
class TorchBase: """ Utility methods for working pretrained Torch models """ def __init__(self, device, quantize=False, min_transformers_version=None): if min_transformers_version is not None: import transformers from packaging import version if version.parse(transformers.__version__) < version.parse( min_transformers_version ): raise Exception( f"This feature requires transformers>={min_transformers_version}. " + "It is usually safe for you to manually upgrade transformers even if ktrain installed a lower version." ) try: import torch except (ImportError, OSError): raise Exception( "This capability in ktrain requires PyTorch to be installed. Please install for your environment: " + "https://pytorch.org/get-started/locally/" ) self.quantize = quantize self.torch_device = device if self.torch_device is None: self.torch_device = "cuda" if torch.cuda.is_available() else "cpu" def quantize_model(self, model): """ quantize a model """ import torch if self.torch_device == "cpu": return torch.quantization.quantize_dynamic( model, {torch.nn.Linear}, dtype=torch.qint8 ) elif self.torch_device != "cpu": return model.half() def device_to_id(self, device_str=None): device_str = self.torch_device if device_str is None else device_str if device_str.lower() == "cpu": return -1 elif device_str.lower() == "cuda": return 0 elif device_str.lower().startswith("cuda:"): _, device_id = device_str.split(":")[1] device_id = int(device_id) return device_id else: warnings.warn("Could not determine device ID - defaulting to -1") return -1
Subclasses
- ExtractiveQABase
- SentimentAnalyzer
- Transcriber
- TransformerSummarizer
- Translator
- ZeroShotClassifier
- ImageCaptioner
- ObjectDetector
Methods
def device_to_id(self, device_str=None)
-
Expand source code
def device_to_id(self, device_str=None): device_str = self.torch_device if device_str is None else device_str if device_str.lower() == "cpu": return -1 elif device_str.lower() == "cuda": return 0 elif device_str.lower().startswith("cuda:"): _, device_id = device_str.split(":")[1] device_id = int(device_id) return device_id else: warnings.warn("Could not determine device ID - defaulting to -1") return -1
def quantize_model(self, model)
-
quantize a model
Expand source code
def quantize_model(self, model): """ quantize a model """ import torch if self.torch_device == "cpu": return torch.quantization.quantize_dynamic( model, {torch.nn.Linear}, dtype=torch.qint8 ) elif self.torch_device != "cpu": return model.half()